Estimating a Probability Distribution

thegreenlaser
Messages
524
Reaction score
16
This is hopefully a simple question...

Given the first n moments or central moments or cumulants (I don't care which) of a probability distribution, is there a standard procedure for estimating its functional form?

For example, I know that given the mean and variance of a distribution, it's fairly standard to assume that it's Gaussian. Is there a more general method?
 
Physics news on Phys.org
Hm. Well, if you know the first n moments, ##\mu_k##, you can construct a polynomial function

$$\tilde{\varphi}_X(t) = 1+\sum_{k=1}^n \frac{\mu_k}{k!} (it)^k,$$

where ##i## is the imaginary unit, which would be a polynomial approximation to the characteristic function ##\varphi_X(t)## of your distribution. The characteristic function of a random variable x is defined as

$$\varphi_X(t) = \mathbb{E}[\exp(itx)];$$
if you know ##\varphi_X(t)##, you can find the distribution by inverse Fourier transform, i.e.,

$$\rho_X(x) = \int_{-\infty}^\infty \frac{dt}{2\pi} e^{-itx}\varphi_X(t).$$

In your case, you could numerically inverse Fourier transform your polynomial approximation ##\tilde{\varphi}_X(t)##, which would give you a numerical estimate of the shape of the probability distribution. It won't tell you if it's a standard distribution like the normal distribution or something, but you'll know what it looks like.

(Since you mentioned probability distribution, I am assuming that your random variables are continuous, rather than discrete.)

The references in this part of the wikipedia page on characteristic functions may be useful.
 
Thanks, that's exactly the kind of thing I was looking for!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
3
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
11
Views
3K
Replies
10
Views
2K
Back
Top