A Estimation of a function

  • Thread starter wrobel
  • Start date
Let ##x(t)\in C^1(\mathbb{R}_+,\mathbb{R}^m)## be a vector-function such that

1) ##\|x(t)\|+\|\dot x(t)\|\to 0## as ##t\to\infty## and

2) for all ##t>0## one has ##\|x(t)\|\le c_1\|\dot x(t)\|##


Is it true that ##\|x(t)\|\le c_2 e^{-c_3t}##? Here ##c_i## are positive constants.
 
33,470
9,204
No.$$x(t)= \frac{1}{t^3} \left(sin(t^2),cos(t^2)\right)$$
 
shame on me. Thanks!
 

Related Threads for: Estimation of a function

Replies
2
Views
670
Replies
5
Views
3K
Replies
1
Views
1K
  • Last Post
Replies
11
Views
5K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
1
Views
373
Replies
3
Views
3K
  • Last Post
Replies
1
Views
1K

Hot Threads

Top