andrewkirk said:
Use the fact that the remainder halves every two steps and that initially it is no greater than bbb..
I am not sure if I am doing this completely right or wrong.
proof of ##r_{i+2} < \frac{1}{2}r_i:##
Let ##a - bq_1 = r_1## s.t. ##b=r_0##
##(case 1):##
If ##b=r_0< \frac{1}{2}a## then ##q_1 \geq 2## so that ##r_1 < r_0##.
Furthermore, in ##r_0 - r_1q_2 = r_2##, since ##r_1 \leq \frac{1}{2}r_0## then it must be that ##q_2 \geq 2## so that ##r_2 < r_1##.
Therefore, ##r_2 < r_1 < \frac{1}{2}r_0## or ##r_{i+2}<r_{i+1}< \frac{1}{2}r_i## or simply ##r_{i+2}<\frac{1}{2}r_i##.
##(case 2):##
If ##b=r_0> \frac{1}{2}a## then ## a- r_0q_1 = r_1## such that ##r_1 < \frac{1}{2}a## and ##r_1 < r_0## and ##q_1=1##
##(subcase 2.1):## If ##r_1 > \frac{1}{2}r_0## then definitely, ##r_2 < \frac{1}{2}r_0## or ##r_{i+2}<\frac{1}{2}r_i##
##(subcase 2.2)## If ##r_1 < \frac{1}{2}r_0## then ##q_2 \geq 2## so that ##r_2 < r_1##.
Therefore, ##r_2<r_1< \frac{1}{2}r_0## or ##r_{i+2}<r_{i+1}< \frac{1}{2}r_i##
From here, I am struggling to apply logarithms to show the final step. Can you give me hints?