1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Question on the Euclidean Algorithm

  1. Sep 26, 2011 #1
    1. The problem statement, all variables and given/known data
    Let [itex]a,b\in\mathbb{Z}[/itex]. Suppose [itex]r_{0}=a[/itex] and [itex]r_{1}=b[/itex]. By the algorithm, [itex]r_{i}=0[/itex] for some [itex]i\geq 2[/itex] is the first remainder that terminates. Show that [itex]r_{i-1}=\gcd(a,b)[/itex].


    2. Relevant equations



    3. The attempt at a solution
    I've shown that [itex]c|r_{i-1}[/itex], and I know that I should show that [itex]r_{i-1}|a[/itex] and [itex]r_{i-1}|b[/itex]. I just don't know how to show both the latter. I don't know where to continue.

    I don't want full solutions just given to me (obviously), just some insight :)

    Thanks!
     
  2. jcsd
  3. Sep 27, 2011 #2

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Maybe prove first that if a certain c divides [itex]r_k[/itex] and [itex]r_{k+1}[/itex], then it divides [itex]r_{k-1}[/itex].
    Then apply this result for c=gcd(a,b).
     
  4. Sep 27, 2011 #3
    Nevermind, I got it without having to break it down into cases!

    Note, [itex]\gcd(a,b)=\gcd(a+mb,b)[/itex] for any [itex]m\in\mathbb{Z}[/itex].

    Define [itex]P(n): \gcd(a_{n-1},a_{n})=\gcd(a_{n},a_{n+1})[/itex]. Let [itex]n_{0}=1[/itex] be our base case. Since [itex]a_{0}=ma_{1}+a_{2}[/itex] by the division algorithm, we have [itex]\gcd(a_{0},a_{1})=\gcd(ma_{1}+a_{2})=\gcd(ma_{1}-ma_{1}+a_{2},a_{1})=\gcd(a_{2},a_{1})=\gcd(a_{1},a_{2})[/itex], thus [itex]P(n_{0})[/itex] is true.

    Now let [itex]n\geq 1[/itex] such that [itex]P(n)[/itex] is true. Then we have [itex]\gcd(a_{n-1},a_{n})=\gcd(a_{n},a_{n+1})=\gcd(ma_{n+1}+a_{n+2},a_{n+1})=\gcd(ma_{n+1}-ma_{n+1}+a_{n+2},a_{n+1})=\gcd(a_{n+2},a_{n+1})=\gcd(a_{n+1},a_{n+2})[/itex]. Hence, [itex]\gcd(a_{n},a_{n+1})=\gcd(a_{n+1},a_{n+2})[/itex], thus for all [itex]n\geq 1[/itex], [itex]P(n)\implies P(n+1)[/itex]. Hence, by the principle of Mathematical Induction: [itex]\forall n\geq 1,P(n)[/itex].

    Since we know that for some [itex]i[/itex], [itex]a_{i}=0[/itex], it follows that: [tex]\gcd(a,b)=\gcd(a_{0},a_{1})=\cdots =\gcd(a_{i-1},a_{i})=\gcd(a_{i-1},0)=a_{i-1}.[/tex] Therefore, [itex]\gcd(a,b)=a_{i-1}[/itex], as required.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Question on the Euclidean Algorithm
  1. Euclidean algorithm (Replies: 4)

  2. Euclidean algorithm (Replies: 3)

Loading...