Euclidean Ring of Z[\zeta]: Unconventional Technique

  • Thread starter Thread starter gonzo
  • Start date Start date
  • Tags Tags
    Euclidean Ring
gonzo
Messages
277
Reaction score
0
Let
\displaystyle{\zeta = e^{{2\pi i} \over 5}}
I need to show that Z[\zeta] is a Euclidean ring.

The only useful technique I know about is showing that given an element \epsilon \in Q(\zeta) we can always find \beta \in Z[\zeta] such that N(\epsilon - \beta) < 1 (using the standard norm for the euclidean function).

This usually involves finding a general expression for the norm and then saying that you can choose beta such that the difference of each basis element is less than 1/2, and then showing that this means you can also get the norm less than 1.

However, the expression I got for the norm here didn't seem to lend itself to this method.

Any suggestions on how to do this?
 
Last edited:
Physics news on Phys.org
show it has a thingummmy - euclidean function, can't remember the precise name, that might help.
 
Of course, but that's the point. The problem is I can't show the Norm is less than one if the coefficients are less than 1/2 and don't know any other techniques.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top