Evaluate Logarithm Integral from 0 to 1

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral Logarithm
Click For Summary
SUMMARY

The forum discussion focuses on evaluating the integral $$ \int^1_0 \frac{\log(1-x)\log^2(x)}{x}dx$$. Participants highlight the importance of correctly applying logarithmic properties and mention the use of polylogarithms as an alternative method for evaluation. A correction regarding a missing minus sign in the calculations is noted, emphasizing the need for precision in mathematical expressions. The discussion concludes with acknowledgment of a more natural method for solving the integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with logarithmic functions
  • Knowledge of polylogarithms
  • Experience with mathematical notation and expressions
NEXT STEPS
  • Study the properties of logarithmic integrals
  • Learn about polylogarithms and their applications
  • Explore advanced techniques in integral evaluation
  • Review common pitfalls in mathematical notation
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in advanced integral evaluation techniques.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Evaluate the following

$$ \int^1_0 \frac{\log(1-x)\log^2(x)}{x}dx$$
 
Physics news on Phys.org
ZaidAlyafey said:
Evaluate the following

$$ \int^1_0 \frac{\log(1-x)\log^2(x)}{x}dx$$

We have

$$\int_0^1 \frac{\log(1-x)\log^2(x)}{x}\, dx$$

$$= \int_0^1 \sum_{n = 1}^\infty -\frac{x^{n-1}}{n}\log^2(x)\, dx$$

$$= -\sum_{n = 1}^\infty \frac{1}{n}\int_0^1 x^{n-1}\log^2(x)\, dx$$

$$= -\sum_{n = 1}^\infty \frac{1}{n}\int_ 0^\infty e^{-nu}u^2\, du \qquad [u = -\log(x)]$$

$$= -\sum_{n = 1}^\infty \frac{1}{n^4}\int_0^\infty e^{-v} v^2\, dv \qquad [v = nu]$$

$$= -\frac{\pi^4}{90}\cdot\Gamma(3)$$

$$= -\frac{\pi^4}{45}.$$
 
Last edited:
Another way is using polylogs

Define the following

$$\mathrm{Li}_n(z) = \sum_{k\geq 1} \frac{x^k}{k^n}$$

Then we have

$$\mathrm{Li}_{n}(z) = \int^z_0 \frac{\mathrm{Li}_{n-1}(x)}{x}\,dx$$

Hence we have using integration by parts twice

$$I=2\int^1_0 \frac{\mathrm{Li}_2(x)\log(x)}{x}\,dx =-2 \int^1_0 \frac{\mathrm{Li}_3(x)}{x}\,dx =-2 \mathrm{Li}_4(1) = -2\zeta(4) =\frac{-\pi^4}{45}$$
 
Last edited:
ZaidAlyafey said:
Hey Euge , I think you are missing a minus sign .

Yes, you're right. I thought I had them there. In any case I've made the corrections.
 
Euge said:
Yes, you're right. I thought I had them there. In any case I've made the corrections.

Nice method by the way. The more natural way to solve such a question.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
15K
Replies
10
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K