Edit: Never mind I found my error, moderator can lock this.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Evaluate the integral [itex]\int_0^{\pi} \frac{dt}{(a+cost)^2}[/itex] for a > 1.

2. Relevant equations

[tex]\int_0^{\pi}\frac{dt}{(a+cost)^2} = \pi i\sum_{a\epsilon \mathbb{E}}Res(f;\alpha)[/tex]

Where [itex]\mathbb{E}[/itex] is the open unit disk, and [itex]f(z) = \frac{1}{iz(a+\frac{1}{2}(z+\frac{1}{z}))^2}[/itex].

3. The attempt at a solution

[tex]f(z) = \frac{1}{iz(a+\frac{1}{2}(z+\frac{1}{z}))^2} = \frac{1}{iz\frac{(z^2 + 2az + 1)^2}{4z^2}} = \frac{-4iz}{(z^2 + 2az + 1)^2} = \frac{-4iz}{[(z + a + \sqrt{a^2 - 1})(z + a - \sqrt{a^2 - 1})]^2}[/tex]

Thus f has two roots of multiplicity two. It's fairly easy to see that only the root [itex]z = -a + \sqrt{a^2 - 1}[/itex] lies inside the open unit disk for a > 1, thus we set [itex] b = -a + \sqrt{a^2 - 1}[/itex] and obtain:

[tex]\pi i\sum_{\alpha\epsilon\mathbb{E}}Res(f;\alpha) = Res(f;b) = lim_{z\rightarrow b}\frac{d}{dz}\frac{-4iz(z+a-\sqrt{a^2 - 1})^2}{(z + a + \sqrt{a^2 - 1})^2(z + a - \sqrt{a^2 - 1})^2} = lim_{z\rightarrow b}4\pi\frac{d}{dz}\frac{z}{(z+a+\sqrt{a^2 - 1})^2} = lim_{z\rightarrow b}4\pi \frac{a + \sqrt{a^2 - 1} -z}{(z + a + \sqrt{a^2 - 1})^3}[/tex]

From here I take the limit and after simplification obtain [itex]\frac{\pi\sqrt{a^2 - 1}}{a^3}[/itex]. Yet the book says my answer should be [itex]\frac{\pi a}{(a^2 - 1)\sqrt{a^2 - 1}}[/itex]. Where have I gone wrong? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Evaluate real integral using residue theorem, where did I go wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**