Bill Foster
- 334
- 0
Homework Statement
Suppose that f\left(A\right) is a function of a Hemitian operator A with the property A|a'\rangle=a'|a'\rangle. Evaluate \langle b''|f\left(A\right)|b'\rangle when the transformation matrix from the a' basis to the b' basis is known.
\langle\beta|A|\alpha\rangle=\int dx' \int dx'' \langle\beta|x'\rangle\langle x'|A|x''\rangle \langle x''|\alpha\rangle=\int dx' \int dx'' \psi_\beta^*\left(x'\right)\langle x'|A|x''\rangle\psi_\alpha\left(x''\right)
The Attempt at a Solution
Transformation from a' to b' basis:
U|a'\rangle = |b'\rangle
Multiply both sides by a'':
\langle a''|U|a'\rangle = \langle a''|b'\rangle
This is the transformation matrix.
Now insert |a''\rangle\langle a''| into \langle b''|f\left(A\right)|b'\rangle:
\langle b''|f\left(A\right)|a''\rangle\langle a''|b'\rangle
Now insert |a'\rangle\langle a'| into the above:
\langle b''|a'\rangle\langle a'|f\left(A\right)|a''\rangle\langle a''|b'\rangle
This is a transformation matrix: \hat{T}=\langle a''|b'\rangle
And so is this: \hat{T}^*=\langle b''|a'\rangle.
So then:
\langle b''|f\left(A\right)|b'\rangle = \hat{T}^* \langle a'|f\left(A\right)|a''\rangle \hat{T}
Last edited: