Evaluating a sum involving binomial coefficients

Click For Summary

Discussion Overview

The discussion revolves around evaluating the sum involving binomial coefficients given by $$\mathop{\sum \sum}_{0\leq i

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant attempts to rewrite the sum and expresses uncertainty about how to proceed, indicating a need for assistance.
  • Another participant suggests that the innermost sum resembles a binomial expansion, though this is met with skepticism.
  • A different participant reformulates the sum, noting the symmetry in the summand when interchanging indices and discusses the implications of adding the sums and including diagonal terms.
  • It is pointed out that the overall sum can be expressed in terms of a known result involving the sum of squares of binomial coefficients, leading to a specific expression for the evaluated sum.
  • One participant expresses gratitude for the insights shared, indicating a positive reception of the contributions made in the discussion.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the evaluation method initially, with some proposing different interpretations of the sum and its components. However, there is a progression towards a more unified approach as the discussion evolves.

Contextual Notes

Some participants highlight the importance of symmetry in the summand and the implications of the binomial expansion, but there are unresolved aspects regarding the initial formulation and the steps taken to simplify the sum.

Who May Find This Useful

This discussion may be useful for individuals interested in combinatorial mathematics, particularly those exploring properties of binomial coefficients and their applications in summation problems.

Saitama
Messages
4,244
Reaction score
93
Problem:
Evaluate
$$\mathop{\sum \sum}_{0\leq i<j\leq n} (-1)^{i-j+1}{n\choose i}{n\choose j}$$

Attempt:
I wrote the sum as:
$$\sum_{j=1}^{n} \sum_{i=0}^{j-1} (-1)^{i-j+1}{n\choose i}{n\choose j}$$
I am not sure how to proceed from here. I tried writing down a few terms but that doesn't seem to help.

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
To me, the innermost sum looks like a binomial expansion...
 
Prove It said:
To me, the innermost sum looks like a binomial expansion...

I don't think so...(Wondering)

The sum is
$$-\sum_{j=1}^{n} (-1)^i{n\choose i} \sum_{i=0}^{j-1} (-1)^j {n\choose j}$$
The limits for innermost sum varies from 0 to j-1, not 0 to n.
 
Pranav said:
Problem:
Evaluate
$$\mathop{\sum \sum}_{0\leq i<j\leq n} (-1)^{i-j+1}{n\choose i}{n\choose j}$$
First, $(-1)^{-j} = (-1)^{\,j}$, so we can write the sum as $$S = \mathop{\sum \sum}_{0\leqslant i<j\leqslant n} (-1)^{i+j+1}{n\choose i}{n\choose j}$$. The summand is then symmetric in $i$ and $j$, so the sum $S$ is equal to $$ \mathop{\sum \sum}_{0\leqslant j<i\leqslant n} (-1)^{i+j+1}{n\choose i}{n\choose j}$$ (with $i$ and $j$ interchanged). If we now add those two sums, and also throw in the diagonal terms (those with $i=j$ in the summand, namely $$ \sum_{i=0}^n -{n\choose i}^2$$), then we would get the sum over the whole $n\times n$ array of indices $\{(i,j): 1\leqslant i \leqslant n,\; 1 \leqslant j \leqslant n\}$. But that sum is $$-\sum_{i=0}^n (-1)^i{n\choose i} \sum_{j=0}^n (-1)^j{n\choose j}$$. And $$\sum_{i=0}^n (-1)^i{n\choose i} = 0$$, because it is the binomial expansion of $(1-1)^n$.

It follows that $$2S - \sum_{i=0}^n {n\choose i}^2 = 0$$, and so $$S = \frac12\sum_{i=0}^n {n\choose i}^2 = \frac{(2n)!}{2(n!)^2}$$ (see formula (9) here for the sum of the squares of binomial coefficients $n\choose i$).
 
Opalg said:
First, $(-1)^{-j} = (-1)^{\,j}$, so we can write the sum as $$S = \mathop{\sum \sum}_{0\leqslant i<j\leqslant n} (-1)^{i+j+1}{n\choose i}{n\choose j}$$. The summand is then symmetric in $i$ and $j$, so the sum $S$ is equal to $$ \mathop{\sum \sum}_{0\leqslant j<i\leqslant n} (-1)^{i+j+1}{n\choose i}{n\choose j}$$ (with $i$ and $j$ interchanged). If we now add those two sums, and also throw in the diagonal terms (those with $i=j$ in the summand, namely $$ \sum_{i=0}^n -{n\choose i}^2$$), then we would get the sum over the whole $n\times n$ array of indices $\{(i,j): 1\leqslant i \leqslant n,\; 1 \leqslant j \leqslant n\}$. But that sum is $$-\sum_{i=0}^n (-1)^i{n\choose i} \sum_{j=0}^n (-1)^j{n\choose j}$$. And $$\sum_{i=0}^n (-1)^i{n\choose i} = 0$$, because it is the binomial expansion of $(1-1)^n$.

It follows that $$2S - \sum_{i=0}^n {n\choose i}^2 = 0$$, and so $$S = \frac12\sum_{i=0}^n {n\choose i}^2 = \frac{(2n)!}{2(n!)^2}$$ (see formula (9) here for the sum of the squares of binomial coefficients $n\choose i$).

This is great, thank you Opalg! :) (Bow)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
428
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K