Evaluating Limit of Homework Statement

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Limit
azatkgz
Messages
182
Reaction score
0

Homework Statement


Evaluate limit in terms of the number \alpha=\lim_{x\rightarrow 0}\frac{sinx}{x}


\lim_{x\rightarrow 0}\frac{tan^2x+2x}{(x+x^2)}


The Attempt at a Solution



\lim_{x\rightarrow 0}\frac{tan^2x+2x}{x}-\lim_{x\rightarrow 0}\frac{tan^2x+2x}{(1+x)}
=\lim_{x\rightarrow 0}\frac{sin^2x}{xcos^2x}-\lim_{x\rightarrow 0}\frac{sin^2x}{cos^2x(1+x)}+2
 
Physics news on Phys.org
Everything looks right to me, now just evaluate the individual limits.

Since \lim_{x\rightarrow 0}\frac{sin^2x}{cos^2x(1+x)}
is continuous about 0, then you can simply plug x =0.

For \lim_{x\rightarrow 0}\frac{sin^2x}{xcos^2x} you can split this into

\lim_{x\rightarrow 0}\frac{sin(x)}{x}\lim_{x\rightarrow 0}\frac{sin(x)}{cos^2(x)} or \lim_{x\rightarrow 0}\frac{sin^2x}{x}\lim_{x\rightarrow 0}\frac{1}{cos^2x}

Then use L'Hopitals rule. The answer is the same either way. (note that we've assumed here that the limits exist so that we can use the multiplicative limit law).

By the hint in the question, I assume you should do it the first way.
 
So the answer is just 2.
 
That's what I got, and if you plot the function, you'll see it to be true.

Edit: If you want another way of verifying, apply L'hopitals rule right off the bat, and you'll get

\lim_{x\rightarrow 0}\frac{2tan(x)sec^2(x)+2}{1+2x}

Again a continuous function about x=0, so you can evaluate very quickly to get the same answer.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top