opticaltempest
- 135
- 0
How do I evaluate this limit?
<br /> \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n <br />
Is this the correct approach?
<br /> {\rm{Let}} \; \; \; y = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n <br />
<br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {\left( {\frac{2}{3}} \right)^n } \right]<br />
<br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \left[ {n \cdot \ln \left( {\frac{2}{3}} \right)} \right]<br />
I am stuck at this step. I don't see a way to manipulate the limit into a
form that L'Hopital's Rule will apply. I know the limit evaluates to 0.
<br /> \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n <br />
Is this the correct approach?
<br /> {\rm{Let}} \; \; \; y = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n <br />
<br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {\left( {\frac{2}{3}} \right)^n } \right]<br />
<br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \left[ {n \cdot \ln \left( {\frac{2}{3}} \right)} \right]<br />
I am stuck at this step. I don't see a way to manipulate the limit into a
form that L'Hopital's Rule will apply. I know the limit evaluates to 0.
Last edited: