Evaluating partition function (stuck for weeks)

AI Thread Summary
The discussion revolves around the challenge of calculating a partition function for a system resembling the Ising model, with the user seeking guidance after being stuck for two weeks. They aim to express the partition function as an integral while managing the complexities of the summation over configurations. The user has attempted to apply a Hubbard-Stratonovich transformation to simplify the exponent in the partition function but has ended up with a lengthy and complicated expression. They are looking for advice on how to proceed with their calculations and how to format mathematical symbols correctly in the forum. The conversation highlights the need for support in advanced statistical physics topics beyond typical homework problems.
dumbperson
Messages
77
Reaction score
0
Hi, I'm trying to calculate the partition function for a certain system and I arrived at an expression for the partition function $Z$, and have been stuck here for two weeks at the least. This is not a homework problem. If this is the wrong place to post a question like this, could you please direct me as to where I could ask this? My goal is to express this partition function into an integral over some function, as long as I get the sigmas/spins out.

I will leave out the details of the system (it's not exactly physics), but I'll gladly provide more info if you want any, but it looks like the Ising model.

$$ Z = \sum_{\vec{G}}\exp{\left[\sum_{i} \left(\frac{J(M-1)}{2}\sum_{j}\sum_{\alpha}\sigma_{ij}^\alpha - \sum_{\alpha}\sum_{j}\sigma_{ij}^\alpha \frac{\theta_i + \theta_j}{4} + \frac{J}{4} \sum_{j}\left(\sum_{\alpha}\sigma_{ij}^\alpha \right)^2 - \frac{1}{2}\sum_{j}h_{ij}^0 - \frac{JMN}{4} \right) \right]}$$

where $$\sigma_{ij}^\alpha \in \{-1,1\}$$
and the summation over G means to sum over all possible configurations of $$\{\sigma_{ij}^\alpha\}$$
where $i<j$, and $j = 1,...,N$ and $\alpha = 1,...,M$
$$ \sum_{\vec{G}} = \sum_{\{\sigma_{ij}^\alpha \} = \pm 1} = \sum_{\sigma_{11}^1 = \pm 1 }\sum_{\sigma_{11}^2 = \pm 1 } ... \sum_{\sigma_{12}^1 = \pm 1 }\sum_{\sigma_{12}^2 = \pm 1 }... $$

$M$ are the amount of different values of $\alpha$ (so alpha goes from 1 to $M$), $N$ are the amount of different values for$i$ and $j, J$ and $\theta_i$ are (unknown) constants, and $h_{ij}^0$ is a function of $J, \theta_i, \theta_j$.Normally what is done with partition functions such as these is that the term inside the exponent is linearized by using a "Hubbard stratonovich" transformation:

$$ e^{-\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 - iKsx} dx $$
$$e^{\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 + Ksx} dx $$
or

$$ e^{\frac{1}{2}\sum_{ij}K_{ij}s_is_j} =\left(\frac{\det{K}}{(2\pi)^N} \right)^{1/2} \int^{\infty}_{-\infty}...\int^{\infty}_{\infty}\prod_{k=1}^Nd\phi_k \exp{\left[-\frac{1}{2}\sum_{ij}\phi_i K_{ij}\phi_j + \sum_{ij} s_iK_{ij}\phi_j\right]} $$

I have tried to use this here, first I tried to write the partition function as

$$ Z = \sum_{G}\exp{\left[\sum_i \left(\frac{J(M-1)}{2}m_i - \frac{\theta_i}{2} m_i + \frac{J}{4}m_i^2 - \frac{J}{2}\sum_{j<k}m_{ij}m_{ik} - \frac{1}{2}\sum_j h_{ij}^0 - \frac{JMN}{4} \right) \right]} $$

where
$$m_{ij} = \sum_{\alpha} \sigma_{ij}^\alpha , \qquad m_{i} = \sum_{j}m_{ij} $$

The parts of the exponent with $m_i , m_i^2$ i can write as an integral over some integration variable with subscript $i$, and then I'm left with the " cross terms" . I used that
$$m_{ij}m_{ik} = \frac{1}{2}m_{ij}^2 + \frac{1}{2}m_{ik}^2 + \frac{1}{2}(m_{ij}+m_{ik})^2 $$

and this transformation :

$$e^{-\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 - iKsx} dx $$

which leads to a final partition function that looks like (if I've done everything correctly...) that is enormous and I have no idea what to do with it

$$
Z = \exp{\left[- \frac{N^2K}{4}-\frac{1}{2}\sum_i \sum_j h_{ij}^0 \right]}\sum_{G}\left(\prod_i \left(\frac{K}{4\pi M}\right)^{1/2} \int \exp{\left[-\frac{K}{4M}x_i^2 + \frac{K}{2M} m_i x_i + \frac{K(M-1)}{2M}m_i - \frac{\theta_i}{2}m_i\right]}dx_i \right)
\\
\prod_{i}\prod_{k<j}\left( \left(\frac{K}{4\pi M} \right)^{1/2}\int \exp{\left[-\frac{K}{4M}x_{ij}^2 + \frac{K}{2M}m_{ij}x_{ij} \right]} dx_{ij} \left(\frac{K}{4\pi M} \right)^{1/2} \int \exp{\left[ -\frac{K}{4M}x_{ik}^2 + \frac{K}{2M}m_{ik}x_{ik} \right]} dx_{ik} \right)
\\
\left( \left(\frac{1}{2\pi} \right)^{1/2} \int \exp{\left[-\frac{1}{2}x_{ijk}^2 - i \sqrt{\frac{K}{M}}(m_{ij}+m_{ik})x_{ijk} \right]}dx_{ijk}\right) $$This last expression is really long and in the preview it looked separated over several lines (I used \\) but it doesn't seem to be separated now. How could I do that?

Does anyone have any ideas on how to proceed, or how I could try this differently? I'd greatly appreciate it! :)
 
Physics news on Phys.org
I'm sorry. How do I put math symbols within a sentence? I think it used to be within single dollar signs.
 
No one? :-(
 
dumbperson said:
I'm sorry. How do I put math symbols within a sentence? I think it used to be within single dollar signs.
Double $ (as you did now) or double # (for inline math).
We don't have a forum for statistical physics, I moved it to general physics - that is beyond homework level.
 
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks
Back
Top