Evaluating partition function (stuck for weeks)

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the partition function for a specific system, which the original poster describes as similar to the Ising model. The focus is on expressing the partition function in terms of an integral while managing the complexities of the system's parameters and configurations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • The original poster presents an expression for the partition function $Z$ and expresses difficulty in simplifying it into an integral form.
  • They describe their attempts to linearize the exponent using a Hubbard-Stratonovich transformation and provide several mathematical expressions related to this process.
  • The poster notes that they have rewritten the partition function in terms of new variables $m_i$ and $m_{ij}$ but are still uncertain about how to proceed with the resulting complex expression.
  • There are inquiries about formatting mathematical symbols within the forum posts, indicating some confusion about the posting guidelines.
  • Another participant clarifies how to format math symbols and mentions the relocation of the thread to a more appropriate section of the forum.

Areas of Agreement / Disagreement

Participants do not reach a consensus on how to proceed with the partition function calculation, and the original poster expresses ongoing uncertainty about their approach. There is also a lack of responses to the original poster's request for assistance, indicating that the discussion remains unresolved.

Contextual Notes

The original poster's expression for the partition function is complex and involves multiple summations and transformations, which may not be fully resolved in the current discussion. The limitations of the mathematical steps and assumptions made in the transformations are not explicitly addressed.

dumbperson
Messages
77
Reaction score
0
Hi, I'm trying to calculate the partition function for a certain system and I arrived at an expression for the partition function $Z$, and have been stuck here for two weeks at the least. This is not a homework problem. If this is the wrong place to post a question like this, could you please direct me as to where I could ask this? My goal is to express this partition function into an integral over some function, as long as I get the sigmas/spins out.

I will leave out the details of the system (it's not exactly physics), but I'll gladly provide more info if you want any, but it looks like the Ising model.

$$ Z = \sum_{\vec{G}}\exp{\left[\sum_{i} \left(\frac{J(M-1)}{2}\sum_{j}\sum_{\alpha}\sigma_{ij}^\alpha - \sum_{\alpha}\sum_{j}\sigma_{ij}^\alpha \frac{\theta_i + \theta_j}{4} + \frac{J}{4} \sum_{j}\left(\sum_{\alpha}\sigma_{ij}^\alpha \right)^2 - \frac{1}{2}\sum_{j}h_{ij}^0 - \frac{JMN}{4} \right) \right]}$$

where $$\sigma_{ij}^\alpha \in \{-1,1\}$$
and the summation over G means to sum over all possible configurations of $$\{\sigma_{ij}^\alpha\}$$
where $i<j$, and $j = 1,...,N$ and $\alpha = 1,...,M$
$$ \sum_{\vec{G}} = \sum_{\{\sigma_{ij}^\alpha \} = \pm 1} = \sum_{\sigma_{11}^1 = \pm 1 }\sum_{\sigma_{11}^2 = \pm 1 } ... \sum_{\sigma_{12}^1 = \pm 1 }\sum_{\sigma_{12}^2 = \pm 1 }... $$

$M$ are the amount of different values of $\alpha$ (so alpha goes from 1 to $M$), $N$ are the amount of different values for$i$ and $j, J$ and $\theta_i$ are (unknown) constants, and $h_{ij}^0$ is a function of $J, \theta_i, \theta_j$.Normally what is done with partition functions such as these is that the term inside the exponent is linearized by using a "Hubbard stratonovich" transformation:

$$ e^{-\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 - iKsx} dx $$
$$e^{\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 + Ksx} dx $$
or

$$ e^{\frac{1}{2}\sum_{ij}K_{ij}s_is_j} =\left(\frac{\det{K}}{(2\pi)^N} \right)^{1/2} \int^{\infty}_{-\infty}...\int^{\infty}_{\infty}\prod_{k=1}^Nd\phi_k \exp{\left[-\frac{1}{2}\sum_{ij}\phi_i K_{ij}\phi_j + \sum_{ij} s_iK_{ij}\phi_j\right]} $$

I have tried to use this here, first I tried to write the partition function as

$$ Z = \sum_{G}\exp{\left[\sum_i \left(\frac{J(M-1)}{2}m_i - \frac{\theta_i}{2} m_i + \frac{J}{4}m_i^2 - \frac{J}{2}\sum_{j<k}m_{ij}m_{ik} - \frac{1}{2}\sum_j h_{ij}^0 - \frac{JMN}{4} \right) \right]} $$

where
$$m_{ij} = \sum_{\alpha} \sigma_{ij}^\alpha , \qquad m_{i} = \sum_{j}m_{ij} $$

The parts of the exponent with $m_i , m_i^2$ i can write as an integral over some integration variable with subscript $i$, and then I'm left with the " cross terms" . I used that
$$m_{ij}m_{ik} = \frac{1}{2}m_{ij}^2 + \frac{1}{2}m_{ik}^2 + \frac{1}{2}(m_{ij}+m_{ik})^2 $$

and this transformation :

$$e^{-\frac{1}{2}Ks^2} = \left(\frac{K}{2\pi} \right)^{1/2}\int e^{-\frac{1}{2}Kx^2 - iKsx} dx $$

which leads to a final partition function that looks like (if I've done everything correctly...) that is enormous and I have no idea what to do with it

$$
Z = \exp{\left[- \frac{N^2K}{4}-\frac{1}{2}\sum_i \sum_j h_{ij}^0 \right]}\sum_{G}\left(\prod_i \left(\frac{K}{4\pi M}\right)^{1/2} \int \exp{\left[-\frac{K}{4M}x_i^2 + \frac{K}{2M} m_i x_i + \frac{K(M-1)}{2M}m_i - \frac{\theta_i}{2}m_i\right]}dx_i \right)
\\
\prod_{i}\prod_{k<j}\left( \left(\frac{K}{4\pi M} \right)^{1/2}\int \exp{\left[-\frac{K}{4M}x_{ij}^2 + \frac{K}{2M}m_{ij}x_{ij} \right]} dx_{ij} \left(\frac{K}{4\pi M} \right)^{1/2} \int \exp{\left[ -\frac{K}{4M}x_{ik}^2 + \frac{K}{2M}m_{ik}x_{ik} \right]} dx_{ik} \right)
\\
\left( \left(\frac{1}{2\pi} \right)^{1/2} \int \exp{\left[-\frac{1}{2}x_{ijk}^2 - i \sqrt{\frac{K}{M}}(m_{ij}+m_{ik})x_{ijk} \right]}dx_{ijk}\right) $$This last expression is really long and in the preview it looked separated over several lines (I used \\) but it doesn't seem to be separated now. How could I do that?

Does anyone have any ideas on how to proceed, or how I could try this differently? I'd greatly appreciate it! :)
 
Science news on Phys.org
I'm sorry. How do I put math symbols within a sentence? I think it used to be within single dollar signs.
 
No one? :-(
 
dumbperson said:
I'm sorry. How do I put math symbols within a sentence? I think it used to be within single dollar signs.
Double $ (as you did now) or double # (for inline math).
We don't have a forum for statistical physics, I moved it to general physics - that is beyond homework level.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K