Sai-
- 8
- 0
Homework Statement
Use Stokes' Theorem to evaluate \int\int curl \vec{F}\bullet d\vec{S} where \vec{F}(x,y,z) = <e^{z^{2}},4z-y,8xsin(y)> and S is the portion of the paraboloid
z = 4-x^{2}-y^{2} above the xy plane.
Homework Equations
Stokes Thm:\int\int curl \vec{F}\bullet d\vec{S} = \int \vec{F}\bullet d\vec{r}
\vec{F}(x,y,z) = <e^{z^{2}},4z-y,8xsin(y)>
S: z = 4-x^{2}-y^{2} above the z = 0.
The Attempt at a Solution
C: \vec{r}(t) = <2cos(t), 2sin(t), 0> where 0\leq t\leq2\pi
\vec{r}'(t) = <-2sin(t), 2cos(t), 0>
\vec{F}(\vec{r}(t)) = <e^{0}, (4(0) - 2sin(t), 8(2(cos(t))sin(2cos(t))>
\vec{F}(\vec{r}(t)) = <1, -2sin(t), 16cos(t)sin(2cos(t))>
\int <1, -2sin(t), 16cos(t)sin(2cos(t))> \bullet <-2sin(t), 2cos(t), 0> dt from 0 to 2pi
=\int -2sin(t)-2sin(t)2cos(t) dt from 0 to 2pi
=0
Last edited: