here is what I've done from what I've understanded
let
f(z)=\frac{R\left(\frac{1}{2}\left(z+\frac{1}{z}\right),\frac{1}{2i}\left(z-\frac{1}{z}\right)\right)}{iz}
and \gamma=e^{i\theta} where 0\leq\theta\leq2\pi
then
\int_{\gamma}f=\int_{0}^{2\pi}f(e^{i\theta})ie^{i\theta}d\theta=\int_{0}^{2\pi}R\left(\frac{e^{i\theta}+e^{-i\theta}}{2},\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)\frac{ie^{i\theta}}{ie^{i\theta}}d\theta=\int_{0}^{2\pi}R(\cos\theta,\sin\theta)d\theta
implies that
\int_{0}^{2\pi}R(\cos\theta,\sin\theta)d\theta=2\pi i \sum res\{f(z),\Omega\}
where \Omega is the unit disk.
EDIT... in fact, you can extend the result to
\int_{0}^{\alpha}R(\cos\theta,\sin\theta)d\theta=2\pi i \sum res\{f(z),\Omega_{\alpha}\}
where \Omega_{\alpha} is the slice of unit disk. This should make calculation easier
in your case
f(z)=-\frac{i}{5z^2+rz+5}
Its all downhill from here right?