DivGradCurl
- 364
- 0
(a) Expand
f(x)=\frac{x+x^2}{\left( 1-x\right) ^3}
as a power series.
(b) Use part (a) to find the sum of the series
\sum _{n=0} ^{\infty} \frac{n^2}{2^n}
\hline
Here is what I've got:
(a)
f(x)=\frac{x+x^2}{\left( 1-x \right) ^3 } = \left( x + x^2 \right) \left[ 1 + (-x) \right] ^{-3} = \left( x + x^2 \right) \sum _{n=0} ^{\infty} \binom{-3}{k} (-x) ^k = \left( x + x^2 \right) \sum _{n=0} ^{\infty} (-1) ^k \binom{-3}{k} x ^k
f(x) = \left( x + x^2 \right) \left[ \binom{-3}{0} - \binom{-3}{1}x + \binom{-3}{2} x^2 - \binom{-3}{3} x^3 + \binom{-3}{4} x^4 - \cdots \right]
f(x) = \left( x + x^2 \right) \left[ 1 - \frac{(-3)}{1!}x + \frac{(-3)(-4)}{2!}x^2 - \frac{(-3)(-4)(-5)}{3!}x^3 + \frac{(-3)(-4)(-5)(-6)}{4!}x^4 -\cdots \right]
f(x) = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} \frac{\left( n+2 \right)!}{n!}x^n \right] = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} (n+2)(n+1)x^n \right]
f(x) = x + x^2 + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+1} \right] + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+2} \right]
(b)
\sum _{n=0} ^{\infty} \frac{n^2}{2^n} = ?
Thank you
f(x)=\frac{x+x^2}{\left( 1-x\right) ^3}
as a power series.
(b) Use part (a) to find the sum of the series
\sum _{n=0} ^{\infty} \frac{n^2}{2^n}
\hline
Here is what I've got:
(a)
f(x)=\frac{x+x^2}{\left( 1-x \right) ^3 } = \left( x + x^2 \right) \left[ 1 + (-x) \right] ^{-3} = \left( x + x^2 \right) \sum _{n=0} ^{\infty} \binom{-3}{k} (-x) ^k = \left( x + x^2 \right) \sum _{n=0} ^{\infty} (-1) ^k \binom{-3}{k} x ^k
f(x) = \left( x + x^2 \right) \left[ \binom{-3}{0} - \binom{-3}{1}x + \binom{-3}{2} x^2 - \binom{-3}{3} x^3 + \binom{-3}{4} x^4 - \cdots \right]
f(x) = \left( x + x^2 \right) \left[ 1 - \frac{(-3)}{1!}x + \frac{(-3)(-4)}{2!}x^2 - \frac{(-3)(-4)(-5)}{3!}x^3 + \frac{(-3)(-4)(-5)(-6)}{4!}x^4 -\cdots \right]
f(x) = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} \frac{\left( n+2 \right)!}{n!}x^n \right] = \left( x + x^2 \right) \left[ 1 + \frac{1}{2} \sum _{n=1} ^{\infty} (n+2)(n+1)x^n \right]
f(x) = x + x^2 + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+1} \right] + \frac{1}{2} \sum _{n=1} ^{\infty} \left[ (n+2)(n+1)x^{n+2} \right]
(b)
\sum _{n=0} ^{\infty} \frac{n^2}{2^n} = ?
Thank you
Last edited: