I Expectation for the Harmonic Oscillator ( using dirac)

Somali_Physicist
Messages
117
Reaction score
13
I've been trying to form a proof using , using majorly dirac notation.There has been claims that its much better to use in QM.

The question i wanted to generally show that the expected value is Zero for all odd energy levels.I believe i have solved the question but I am a bit Iffy about a step i took:

<x>n = <Ψn|x|Ψn> = L
for a given Ψn = (A+)n(n!)-2
Energy eigen functions have definite parity, assume for all odd n's if one is zero the rest should follow.
Take n = 1
=> L = <(A+)(n!)-2|x|(A+)(n!)-2>
= (n!)-1 <(A+)|x|(A+)>
B = <(A+)|x|(A+)>
Define A+ = Lx + iC : B,C are Real
=> <Lx+iC|x|Lx+iC>
(Bit iffy after these steps)
= <Lx|x|Lx|> + <iC|x|iC>
= <L|x3|L>+<C|x|C>
as ∫x2n+1dx for limits [-∞,∞] and n =0,1,2,3...
=> 0
we find B=0
therefore
<x>n = 0
For odd ns.
 
Last edited:
Physics news on Phys.org
What about even values of ##n##? You are going about it backwards. Instead of replacing ##\psi_n##, write operator ##x## in terms of ##a^{\dagger}## and ##a## and use your knowledge of what ##a^{\dagger}|\psi_n>## and ##a|\psi_n>## are equal to.
 
kuruman said:
What about even values of ##n##? You are going about it backwards. Instead of replacing ##\psi_n##, write operator ##x## in terms of ##a^{\dagger}## and ##a## and use your knowledge of what ##a^{\dagger}|\psi_n>## and ##a|\psi_n>## are equal to.
Surely you wouldn't get an actual value for even values.That would be extremely counter intuitive, that said I will try your advice.
 
You wrote a couple of things that don't make sense.
Somali_Physicist said:
Ψn = (A+)n(n!)-2
This should be
$$
|\psi_n\rangle = \frac{(A^\dagger)^n}{\sqrt{n!}} | 0 \rangle
$$

Somali_Physicist said:
=> L = <(A+)(n!)-2|x|(A+)(n!)-2>
The notation here doesn't work. You can't have an operator in a bra or a ket. You should end up with something like
$$
\langle 0 | A x A^\dagger |0 \rangle
$$
and so on.
 
  • Like
Likes Somali_Physicist
Somali_Physicist said:
Surely you wouldn't get an actual value for even values.That would be extremely counter intuitive, that said I will try your advice.
Why is it so counter intuitive? In your proof, which needs fixing as @DrClaude suggested, you have the integral ∫x2n+1dx where n is odd. What would happen to this integral if n were even? Say n = 2k?
 
Somali_Physicist said:
The question i wanted to generally show that the expected value is Zero for all odd energy levels.
What do you mean by "energy", i.e. what is the Hamiltonian?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top