Expectation Of The Maximum When One Of The Random Variables Is Constant

actcs
Messages
5
Reaction score
0
Good Evening:

I'm given this problem:

A device that continuously measures and records seismic activity is placed in a remote
region. The time, T, to failure of this device is exponentially distributed with mean
3 years. Since the device will not be monitored during its first two years of service, the
time to discovery of its failure is X = max(T, 2) .
Determine E[X].

Solution: 2 + 3 Exp[-2/3]

I've even got the procedure

It's:

E[X] = Integral From 0 To 2 [ 2*f(t)dt ] + Integral From 2 To Infinity [ t*f(t)dt ]

Where f(t)=1/3 Exp[-1/3 t]

I Just want to know, why is this?... Why the interval of the first integral is from 0 To 2, and then again that "2" appears in the integral?... I tried to calculate by means of order statistics but result didn't match

Does someone know how to prove this is actually the solution?... (I'm certain this is the correct solution, but I just want a more specific and justified procedure. I'm not familiarized with constant random variables)

Thanks in advance
 
Physics news on Phys.org
actcs said:
I Just want to know, why is this?... Why the interval of the first integral is from 0 To 2, and then again that "2" appears in the integral?... I tried to calculate by means of order statistics but result didn't match

Good morning, actcs! :smile:

Because E[X] = ∫ X(t) f(t) dt.

So when X(t) is a constant, K, over an interval, the integral over that interval is ∫ K f(t) dt …

and in this case K = 2. :wink:

(and ∫ f(t) dt, without the K, would just be the probability, not the expectation)
 
Hello, Thank you for replying

The problem in this case is that the constant random variable is involved in an order statistic, so it is not so trivial to see the sample space of each of the random variables

I did this: Write the random variable X as:

X = 2 I(0,2](T) + T I(2,Infinity)(T)

Where I(a,b)(T) is an indicator function for the random variable T

The way I see this was:

If device fails between now and the end second year, discovery time will be "End of year 2", whereas if device fails after that, discovery time will match fail time, ie, X=T

I think it was rather complicated to obtain the density funcion of X and then calculate the expectation

Best Regards
 
actcs said:
I've even got the procedure

It's:

E[X] = Integral From 0 To 2 [ 2*f(t)dt ] + Integral From 2 To Infinity [ t*f(t)dt ]

Where f(t)=1/3 Exp[-1/3 t]

I Just want to know, why is this?... Why the interval of the first integral is from 0 To 2, and then again that "2" appears in the integral?... I tried to calculate by means of order statistics but result didn't match

Does someone know how to prove this is actually the solution?... (I'm certain this is the correct solution, but I just want a more specific and justified procedure. I'm not familiarized with constant random variables)

Thanks in advance

I don't think that is the correct solution since:

Integral from 0 to 2 of Exp[-1/3 t]= -Exp[-1/3 t]-(1)=1-Exp[-1/3 t]

Therefore your solution should be:

E[X] = 2 [1-Exp[-1/3 t]] + Integral From 2 To Infinity [ t*f(t)dt ]
 
John Creighto said:
I don't think that is the correct solution since:

Integral from 0 to 2 of Exp[-1/3 t]= -Exp[-1/3 t]-(1)=1-Exp[-1/3 t]

Therefore your solution should be:

E[X] = 2 [1-Exp[-1/3 t]] + Integral From 2 To Infinity [ t*f(t)dt ]

I said that solution was

E[X] = Integral From 0 To 2 [ 2*f(t)dt ] + Integral From 2 To Infinity [ t*f(t)dt ]

Which is almost the same as you posted

It should be:

E[X] = 2 [1-Exp[-2/3]] + Integral From 2 To Infinity [ t*f(t)dt ]

Best Regards
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top