Find Expectation Value for Particle Moving in N Steps of Length L

Pacopag
Messages
193
Reaction score
4

Homework Statement


A particle moves in a sequence of steps of length L. The polar angle \theta for each step is taken from the (normalized) probability density p(\theta). The azimuthal angle is uniformly distributed. Suppose the particle makes N steps.
My question is how do I find the expectation value (say <z^2> for example).

Homework Equations


Usually for a probability density p(x) we have
<x^m>=\int x^m p(x) dx.

The Attempt at a Solution


I think that I can get the values for one step. eg.
<z^2>=\int_0^\pi (Lcos(\theta))^2p(\theta)d\theta={L^{2}\over 2}
Note: the density p(\theta) is normalized.
I just don't know how to treat N steps. Do I just multiply the one-step result by N?
 
Physics news on Phys.org
What is p(\theta)? Is it given?
 
Oh ya. Sorry. It is
p(\theta) ={2 \over \pi}cos^2({\theta \over 2})
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top