Explaining the Simplification of a Complex Fraction with Integer n

  • Thread starter Thread starter leopard
  • Start date Start date
leopard
Messages
123
Reaction score
0
Can somebody explain why

\frac{-1}{(2 \pi )(2+in)}[e^{- \pi (2 + in)} - e^{\pi (2 + in)}]

can be written

\frac{(-1)^n}{2+in} \cdot \frac{e^{2 \pi} - e^{-2 \pi}}{2 \pi}

where n is an integer?
 
Physics news on Phys.org
E.g. e^(pi*(2+i*n))=e^(2*pi)*e^(i*pi*n). e^(i*pi*n)=cos(pi*n)+i*sin(pi*n). sin(pi*n)=0. cos(pi*n)=(-1)^n. That sort of thing.
 
I still don't understand why it's

\frac{(-1)^n}{2+in} \frac{e^{2 \pi} - e^{-2 \pi}}{2 \pi}

and not

\frac{-(-1)^n}{2+in} \frac{e^{2 \pi} - e^{-2 \pi}}{2 \pi}
 
leopard said:
I still don't understand why it's

\frac{(-1)^n}{2+in} \frac{e^{2 \pi} - e^{-2 \pi}}{2 \pi}

and not

\frac{-(-1)^n}{2+in} \frac{e^{2 \pi} - e^{-2 \pi}}{2 \pi}

Because it's not. If you do it carefully you'll see that they used the (-1) to flip the order of e^(-2pi)-e^(2pi) into e^(2pi)-e^(-2pi).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top