Viscosity is a number that is supposed to capture on the macro level the behavior of a fluid as it interacts at the micro level with itself, another fluid or a surface. In fact, of course, the behavior of the fluid is really very complex, with eddies and turbulence, as its particles scatter off one another and/or the surface. There are diagrams, Figures 2, 3 and 6, in
http://arxiv.org/abs/nlin.CD/0507032 that illustrate the mechanism causing viscosity and some of its effects.
Figure 3 shows the "blowing of the boundary layer" that causes the low pressure on the surface. Particles of the main flow that encounter the boundary layer particles, which are more or less dragged along by the surface, strike those particles; they interact. No viscosity, no blowing of the boundary layer and no Coanda effect. Figure 6 shows the particle-particle interaction that results in a vortex behind a barrier.
The Coanda effect is not the only thing connected with lift, just for small angles of attack the the most important. For high angles of attack the impingement of the fluid on the bottom of the air foil is more important and indeed as the wing stalls the Coanda effect can morph into an increase of the pressure on the top of the wing.
When viscosity is important, Bernoulli's equation doesn't hold. I'm saying that if there is a wake it is due to particles interacting with each other and with the surface; viscosity. Look long and hard at some of Prandtl's photographs, e.g. in Gersten & Schlichting.
Thanks for your questions.