Exploiting a the inverse to determine eigen vectors?

Jonnyb302
Messages
22
Reaction score
0
Hello, this is related to my research on RCW(FMM) analysis of light shone onto crossed gratings.

main question: can you exploit having matrix A and its inverse A^{-1} to calculate the eigen vectors/values of A in a more effective way?

backgroud:
so my problem is this: I have an unusual matrix with some strange symmetries and I need its eigen vectors. Only when I rewrite it in block form, do these symmetries become apparent. I would post it here but I am not at home so I do not have my saved LaTeX document with useful macros. But the symmetries have no real name, and most people will not be familiar with them.

I have searched quite a bit on the internet and can not find a way to exploit these block matrix symmetries. QR routines do not seem to go well with block matrices. While LU routines might.

However, I think I could devise a scheme to more efficiently calculate the inverse given these symmetries. Hence I am hopping to calculate the inverse, then exploit it to calculate the eigen values and vectors.
 
Physics news on Phys.org
The question for the eigenvalues of ##A## or of ##A^{-1}## is essentially the same, so you will not have additional useful information.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top