Exploring DF vs. RI Approximations

AI Thread Summary
Density fitting (DF) and resolution of the identity (RI) approximations are closely related but distinct concepts in quantum chemistry. DF is used to speed up calculations of two-electron integrals, reducing computational complexity from O(N^5) to potentially O(N^3) by utilizing an auxiliary basis set. While some researchers use RI as a synonym for DF, the mathematical definition of RI involves summation over states and an overlap metric, which are not present in DF. In practical applications, such as in Molpro, separate basis sets must be specified for DF and RI, highlighting their differences. Understanding these distinctions is crucial for accurate quantum chemistry calculations.
Juanchotutata
Messages
12
Reaction score
0
Hi everybody!

I am trying to find the difference between density fitting (DF) and resolution of the Identity (RI) approximations. I have read the following in the article [J. Chem. Phys. 118, 8149 (2003)]:

"Density fitting mathematically resembles a resolution of the identity RI in the specific case where the fitting criterion and target integral type coincide. However, RIs in quantum mechanics usually involve a summation over states and an implied overlap metric, neither of which appear in density fitting. Furthermore RIs do not offer a framework in which to discuss fitting criteria, constraints or robust fitting."

I still do not know what this exactly means. Could anyone give me a hand?

Thank you in advance!
 
Last edited by a moderator:
Chemistry news on Phys.org
Thread moved to Chemistry forum.
 
Juanchotutata said:
Hi everybody!

I am trying to find the difference between density fitting (DF) and resolution of the Identity (RI) approximations. I have read the following in the article [J. Chem. Phys. 118, 8149 (2003)]:

"Density fitting mathematically resembles a resolution of the identity RI in the specific case where the fitting criterion and target integral type coincide. However, RIs in quantum mechanics usually involve a summation over states and an implied overlap metric, neither of which appear in density fitting. Furthermore RIs do not offer a framework in which to discuss fitting criteria, constraints or robust fitting."

I still do not know what this exactly means. Could anyone give me a hand?

Thank you in advance!
I agree, as written this is very confusing. In fact, the key comes later in that same paragraph:
Werner et al said:
In this work we therefore use the term DF-MP2 as a synonym for RI-MP2, and hope that other authors will accept this as the standard name.
So DF is a synonym for RI (which also meshes with my experience). I think what the authors meant by the quote above is that, while many researchers use "resolution of the identity" to refer to the density fitting approximation, the precise mathematical "resolution of the identity"
$$1=\sum_n |n\rangle\langle n|$$
is never actually used. Therefore, they're arguing that "density fitting" should be the term of art, as opposed to "resolution of the identity." At least that's my takeaway.
 
  • Like
Likes Juanchotutata
Thank you very much for your reply!

But I am confused, because when I perform my calculations on Molpro (maybe you have used it), I have to specify basis sets for density fitting and basis sets for resolution of the identity. So, if they are the same, why do I have to specify it twice?
 
Juanchotutata said:
Thank you very much for your reply!

But I am confused, because when I perform my calculations on Molpro (maybe you have used it), I have to specify basis sets for density fitting and basis sets for resolution of the identity. So, if they are the same, why do I have to specify it twice?
From the https://www.molpro.net/info/2012.1/doc/manual/node334.html:
" RI-MP2 is an alias for the command DF-MP2. "
The DF procedure invokes two basis sets. The first is the main basis set that is required for all calculations. The second is an auxiliary basis set used for the actual density fitting.

Density fitting is a way to speed up calculations of the two-electron integrals that appear in quantum chemistry calculations:
$$(ab|ij)=\int d\mathbf{r}_1 \int d\mathbf{r}_2 \frac{\phi_{a}(\mathbf{r}_1)\phi_{b}(\mathbf{r}_1)\phi_{i}(\mathbf{r}_2)\phi_{j}(\mathbf{r}_2)}{r_{12}}$$
The main issue is that transforming this integral from the atomic orbital basis to the molecular orbital basis scales as ##O(N^5)##. However, taking, e.g., ##\phi_{a}(\mathbf{r}_1)\phi_{b}(\mathbf{r}_1) = \rho_{ab}## and expanding ##\rho_{ab} = \sum_n (d_{ab})_n \chi_n## using an easily calculable auxiliary basis set ##\chi_n##, we can "cheat" and knock the integral transformation down to ##O(N^4)## (but if you choose your auxiliary basis set wisely, it ends up being closer to ##O(N^3)## in practice). So DF gives a nice speedup when doing things like MP2 calculations. The disadvantage is that you have to choose an auxiliary basis wisely in order to correctly approximate the density, or you might end up with a sizeable error in your calculations.
 
  • Like
Likes Juanchotutata and jim mcnamara
I think I understand it now. Thank you very much again!
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
I'm trying to find a cheap DIY method to etch holes of various shapes through 0.3mm Aluminium sheet using 5-10% Sodium Hydroxide. The idea is to apply a resist to the Aluminium then selectively ablate it off using a diode laser cutter and then dissolve away the Aluminium using Sodium Hydroxide. By cheap I mean resists costing say £20 in small quantities. The Internet has suggested various resists to try including... Enamel paint (only survived seconds in the NaOH!) Acrylic paint (only...
Back
Top