Exploring the 4th Dimension: Questions and Answers

In summary, the conversation discusses the concept of dimensions beyond the commonly known three dimensions of space. It is explained that in mathematics, higher dimensions are defined algebraically and can be applied in various fields such as physics and computer science. The question of whether these dimensions exist in nature is also raised. It is mentioned that Einstein's theories of relativity use a four-dimensional space, but it is different from the four-dimensional space that is mathematically conceptualized. Finally, the idea of a four-dimensional space with different properties, particularly in terms of the distance between points, is explored.
  • #1
L.Newton
22
0
Hey guys here is my question. 1D = Line
2D is a plane. 3D is space. So shouldn't a fourth dimension be something else? Is there really such a thing as fourth dimensional space. There is no such thing as a 3 dimensional plane. Though you can have a 2D plane in 3D space.

Next question leads to this. Why can't the fourth dimension be time itself. Could the four fundamental forces be themselves dimensions. These questions may be pretty dumb. Some helpful links could go a long way. Thanks!
 
Mathematics news on Phys.org
  • #2
L.Newton said:
Hey guys here is my question. 1D = Line
2D is a plane. 3D is space. So shouldn't a fourth dimension be something else? Is there really such a thing as fourth dimensional space. There is no such thing as a 3 dimensional plane. Though you can have a 2D plane in 3D space.

In mathematics, you can certainly work with dimensions beyond ##3##. You seem to have a quite geometrical way of thinking of dimensions, and this makes it difficult to consider higher dimensions. In mathematics, we define higher dimensions very algebraically.

Perhaps you know how every point in 3D can be denoted by three coordinates ##(x,y,z)##. Well, the four dimensional space that mathematicians look at is just the set of four-tuples ##(x,y,z,t)##. There might not be a point associated to these coordinates in the classical sense, but we act like there is anyway. In this rather algebraic way, we can work with 4 dimensions very easily. And we can even work with "3-dimensional planes in 4D space", they are called hyperplanes.

A course in linear algebra should teach you all this and more.

Next question leads to this. Why can't the fourth dimension be time itself.

In some parts of physics, time is indeed a fourth dimension. But there is a big difference between "spatial dimensions" (which are the three dimensions we know right now) and other dimensions.
 
  • #3
You see that's my question. I'm currently taking linear algebra and cal 3. Both work heavily, especially cal 3, in three dimensions. So I could not help but ask myself the question of "is there such a thing as 4 dimensional space". Are there any applications of four dimensional space? I understand M theory requires 10 and it makes use of the yang-mills theory on spatial dimensions, which I don't fully understand. Perhaps we are losing something by thinking in terms of space.
 
  • #4
L.Newton said:
You see that's my question. I'm currently taking linear algebra and cal 3. Both work heavily, especially cal 3, in three dimensions. So I could not help but ask myself the question of "is there such a thing as 4 dimensional space". Are there any applications of four dimensional space? I understand M theory requires 10 and it makes use of the yang-mills theory on spatial dimensions, which I don't fully understand. Perhaps we are losing something by thinking in terms of space.

In mathematics, 4-dimensional spaces and higher certainly exist. And you bet there are applications of them. The applications range from physics to computer science and engineering.

The harder question is whether these 4-dimensional spaces exist in nature. That's a question of physics, and not of math. But 4-dimensional spaces (whether they exist in nature or not) have a ton of applications already.
 
  • #5
Sorry I didn't read your first reply.
 
  • #6
Right now were discussing linear transforms from R^2 -> R^3. Are we far off from this type of topic?
 
  • #7
The professor tends to just go through examples and say what's in the textbook. He doesn't seem to have a lot of patience for these type of questions
 
  • #8
L.Newton said:
Right now were discussing linear transforms from R^2 -> R^3. Are we far off from this type of topic?
Probably not. You might take a peek ahead in your book at the parts that talk about vector spaces. R2 and R3 are examples of relatively low-dimension vector spaces. There will likely be some examples and problems that involve 4, 5, or higher-dimensions vector spaces. Although difficult to imagine geometrically, most of the concepts in two or three dimensions extend pretty naturally to higher-dimension spaces.
 
  • #9
I will do. Thank you very much
 
  • #10
L.Newton said:
So I could not help but ask myself the question of "is there such a thing as 4 dimensional space". Are there any applications of four dimensional space?
All the math in Einstein's general relativity and in the modern formulations of special relativity is based on a 4-dimensional space; it takes four coordinates - for example, ##(x,y,z,t)## - to completely identify a point in that space.

Interestingly, this four dimensional space has different properties than the four dimensional space that you get if you just take the next logical step in the progression: zero-dimensional point; one-dimensional line; two-dimensional surface; three-dimensional solid; is there a four-dimensional something? At least mathematically, yes: google for "tessaract" and "hypersphere". That line of thinking leads you to the four-dimensional space in which the distance ##\Delta{s}## between two points is given by ##\Delta{s}^2=\Delta{x}^2+\Delta{y}^2+\Delta{z}^2+\Delta{t}^2## (##t## here has nothing to do with time; it's just that there wasn't a letter beyond ##z## that I could use). That space is mathematically fascinating and has led to a few fun science fiction stories (Heinlein's "He Built a Crooked House", for example) but I am no aware of no serious applications of it.

However, the four-dimensional space of relativity, which definitely does have practical applications all over modern physics, has the property that the distance between two points is given by ##\Delta{s}^2=\Delta{x}^2+\Delta{y}^2+\Delta{z}^2-\Delta{t}^2## - note the minus sign, and here ##t## really is time, and the minus sign captures the common-sense observation that time is somehow different than any of three spatial dimensions.
 
Last edited:
  • #11
Nugatory said:
Interestingly, this four dimensional space has different properties than the four dimensional space that you get if you just take the next logical step in the progression: zero-dimensional point; one-dimensional lie;, two-dimensional surface; three-dimensional solid; is there a four-dimensional something? At least mathematically, yes: google for "tessaract" and "hypersphere". That line of thinking leads you to the four-dimensional space in which the distance ##\Delta{s}## between two points is given by ##\Delta{s}^2=\Delta{x}^2+\Delta{y}^2+\Delta{z}^2+\Delta{t}^2## (##t## here has nothing to do with time; it's just that there wasn't a letter beyond ##z## that I could use). That space is mathematically fascinating and has led to a few fun science fiction stories (Heinlein's "He Built a Crooked House", for example) but I am no aware of no serious applications of it.

There are applications enough! For example, if you do optimization or regression with 4 variables, then you work in ##\mathbb{R}^4## with that distance function.
 
  • #12
Very interesting. Iv actually been wanting to get into science fiction. Would you recommend any that have a heavy focus on mathematics or physics?
 
  • #13
L.Newton said:
Very interesting. Iv actually been wanting to get into science fiction. Would you recommend any that have a heavy focus on mathematics or physics?

Not really science fiction, but be sure to read flatland. Wonderful little book. Here's a free version: http://www.gutenberg.org/ebooks/201
 
  • #14
micromass said:
There are applications enough! For example, if you do optimization or regression with 4 variables, then you work in ##\mathbb{R}^4## with that distance function.
I meant application of 4 spatial dimensions as opposed to 4 dimensions. We've done work in linear algebra as high as R^5 in chemistry but my main wonder was 4 spatial dimensions
 
  • #15
L.Newton said:
I meant application of 4 spatial dimensions as opposed to 4 dimensions. We've done work in linear algebra as high as R^5 in chemistry but my main wonder was 4 spatial dimensions

Not even relativity has 4 spatial dimensions. Time doesn't count as a spatial dimension, but as a temporal one. The only physics with more than 3 spatial dimensions seem to be string theory and the like.

To be honest, more than 3 spatial dimensions might be cool, but the real fun starts when you have more than 1 temporal dimension :-p
 
  • #16
micromass said:
Not really science fiction, but be sure to read flatland. Wonderful little book. Here's a free version: http://www.gutenberg.org/ebooks/201
Oh yeah I'm familiar with that one but iv never read it. Thanks for the link
 
  • #18
micromass said:
There are applications enough! For example, if you do optimization or regression with 4 variables, then you work in ##\mathbb{R}^4## with that distance function.

D'oh -of course, and thank you.
 
  • #21
L.Newton said:
Great stuff. Thanks for the feedback. A second temporal dimension sounds pretty cool. Would it run counter to the current arrow of time? Or am I confusing two different topics

I think you should ask this stuff in the physics forum. It are great questions, but they're not really math.

SteveL27 said:
Search engines use n-dimensional vector spaces to determine the degree of similarity of two text documents.

http://en.wikipedia.org/wiki/Vector_space_model

Wow, this is good stuff!
 
  • #22
Gonna move the temporal dimension over to the physics section.
 

FAQ: Exploring the 4th Dimension: Questions and Answers

1. What is the 4th dimension?

The 4th dimension is a theoretical concept that goes beyond the three dimensions of length, width, and height that we experience in our daily lives. It is often referred to as the dimension of time, as it describes the movement and change of objects and events in our universe.

2. Is the 4th dimension real?

The 4th dimension is a mathematical concept that has been theorized by scientists and mathematicians. While it cannot be physically experienced in the same way as the other three dimensions, it is considered to be a real and important aspect of our universe.

3. How do we explore the 4th dimension?

Exploring the 4th dimension requires complex mathematical and scientific theories and experiments. Some scientists believe that the 4th dimension can be explored through concepts such as space-time, quantum mechanics, and string theory.

4. What are some practical applications of understanding the 4th dimension?

Understanding the 4th dimension can have many practical applications in fields such as physics, engineering, and computer science. It can help us better understand the nature of our universe and potentially lead to advancements in technology and scientific discoveries.

5. Can humans ever experience the 4th dimension?

While humans cannot physically experience the 4th dimension in the same way as the other three dimensions, some scientists believe that our consciousness and perception of time may give us a glimpse into this dimension. However, this is still a topic of debate and further research is needed to fully understand the nature of the 4th dimension.

Similar threads

Replies
8
Views
359
Replies
9
Views
3K
Replies
12
Views
20K
Replies
1
Views
1K
Replies
4
Views
3K
Replies
1
Views
283
Replies
6
Views
2K
Replies
1
Views
2K
Back
Top