Exploring the Intersection of Ellipsoids and Spherical Shells

Ark236
Messages
24
Reaction score
3

Homework Statement


I would like to know how the boundary of the inequality change when the origin of the coordinate system changes.

Homework Equations


The original inequality is[/B]
$$ r_0 \le x^2+y^2+z^2 \le R^2$$

I would like to know the boundary of the following term, considering the previous inequality
$$ (2x-1)^2+(2y-1)^2+z^2 $$

The Attempt at a Solution



I write

$$(2x-1)^2+(2y-1)^2+z^2=4[ (x-0.5)^2+(y-0.5)^2+z^2/4] $$[/B]

but I do not know how to proceed with the problem
 
Physics news on Phys.org
Start with a simpler problem. If x2<a2, what bounds can you put on (x-1)2?
It may help to play around with some examples.
 
in this case $$ (x-1)^2 \le (a+1)^2 $$ and $$ (x-1/2)^2 \le (a+1/2)^2 $$
 
Both sets of numbers also describe two different shapes. One is a spherical shell, the other ellipsoids. So the first question is:
'Do you consider them as a coordinate transformation, and you want to know how the shell is transformed?' or 'Do you want to know which part of the ellipsoids intersects with the shell, i.e. both hold within the same coordinate system?'
 
fresh_42 said:
Both sets of numbers also describe two different shapes. One is a spherical shell, the other ellipsoids. So the first question is:
'Do you consider them as a coordinate transformation, and you want to know how the shell is transformed?' or 'Do you want to know which part of the ellipsoids intersects with the shell, i.e. both hold within the same coordinate system?'
I think what is required is the range of ellipsoids (i.e. the values of c in ##c=(2x-1)^2+(2y-1)^2+z^2##) which fit between the two spherical shells.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top