Repetit
- 128
- 2
This is driving me crazy, I just can't see how to do it. I want to express the cartesian unit vectors \hat{x}, \hat{y} and \hat{z} in terms of the spherical unit vectors \hat{r}, \hat{\theta} and \hat{\phi}. I have tried to do something similar in polar coordinates (just to make it a bit simpler for myself) but that didn't really help alot. I have figured out how to express the polar unit vectors in terms of cartesian ones:
\hat{\theta} = -sin(\theta)\hat{x} + cos(\theta) \hat{y}
\hat{r} = cos(\theta) \hat{x} + sin(\theta) \hat{y}
... and I think I can do that for spherical coordinates too. But I can't see how to do it the other way around (polar to cartesian). If you could just help me do it for polar coords I think I will be able to adapt it to spherical.
Thanks!
\hat{\theta} = -sin(\theta)\hat{x} + cos(\theta) \hat{y}
\hat{r} = cos(\theta) \hat{x} + sin(\theta) \hat{y}
... and I think I can do that for spherical coordinates too. But I can't see how to do it the other way around (polar to cartesian). If you could just help me do it for polar coords I think I will be able to adapt it to spherical.
Thanks!