Expressing the density matrix in matrix form

Morbidly_Green
Messages
12
Reaction score
0

Homework Statement



page1-800px-Lambda-type_system.pdf.jpg


Given the above lambda system, is it wrong to say that the density matrix is of the form ## \rho = c_1|1> + c_2|2> + c_3|3> ## ? Hence when written in matrix form (basis of ##|i>##), ## \rho ## is a diagonal matrix who's elements are the ##c_i##s?
 

Attachments

  • page1-800px-Lambda-type_system.pdf.jpg
    page1-800px-Lambda-type_system.pdf.jpg
    12 KB · Views: 732
Physics news on Phys.org
Morbidly_Green said:
Given the above lambda system, is it wrong to say that the density matrix is of the form ## \rho = c_1|1> + c_2|2> + c_3|3> ## ? Hence when written in matrix form (basis of ##|i>##), ## \rho ## is a diagonal matrix who's elements are the ##c_i##s?
Yes, it is wrong because that ##\rho## is not a density operator, just a quantum state (ket). For pure states, the density operator will be a projection operator,
$$
| \psi \rangle \rightarrow \rho = | \psi \rangle \langle \psi |
$$
In the general case, one will have (for a basis ##| i \rangle##)
$$
\rho = \sum_i \sum_j c_{ij} | i \rangle \langle j|
$$
with the complex coefficients ##c_{ij}## to be determined for a particular state.
 
DrClaude said:
Yes, it is wrong because that ##\rho## is not a density operator, just a quantum state (ket). For pure states, the density operator will be a projection operator,
$$
| \psi \rangle \rightarrow \rho = | \psi \rangle \langle \psi |
$$
In the general case, one will have (for a basis ##| i \rangle##)
$$
\rho = \sum_i \sum_j c_{ij} | i \rangle \langle j|
$$
with the complex coefficients ##c_{ij}## to be determined for a particular state.

I see okay thank you
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top