I Extend Euler Product Convergence Over Primes: Basic Qs

  • I
  • Thread starter Thread starter benorin
  • Start date Start date
  • Tags Tags
    Euler Product
benorin
Science Advisor
Insights Author
Messages
1,442
Reaction score
191
I would like to extend the convergence of the Euler product over primes, and I tried to do so in the exact manor it was done for the Dirichlet series, namely, given a completely multiplicative sequence ##a( {kj} ) =a(k) \cdot a(j)\text{ and }a(1)=1##, the Dirichlet series ##\xi (s) := \sum_{k=1}^{\infty} \tfrac{a(k)}{k^s}## can be shown (by adding the alternating version of itself to itself and simplifying) to be equal to ## \hat \xi (s) := \left( 1-2^{1-s} a(2) \right) ^{-1} \sum_{k=1}^{\infty} (-1)^k \tfrac{a(k)}{k^s}##, and this series is an analytic continuation of the former.
Tried to do this to the Euler product

$$\sum_{k=1}^{\infty} \tfrac{a(k)}{k^s} = \prod_{k=1}^{\infty} \left( 1+a( {p_k} ) p_k^{-s} + a ( {p_k^2} ) p_k^{-2s}+\cdots \right)=\prod_{k=1}^{\infty} \tfrac{1}{1-a( {p_k} ) p_k^{-s}}$$

(where ##p_k## is the ##k^{th}## prime and the later equality holds only for completely multiplicative sequences ##a(k)## taking a cue from the analytic continuation of the Dirichlet series I set ##a(k) :=(-1)^{k-1}a^{\prime}(k)## where ##a^{\prime}(k)## is a completely multiplicative sequence and the product becomes

$$\sum_{k=1}^{\infty} (-1)^{k-1}\tfrac{a^{\prime}(k)}{k^s} =\prod_{k=1}^{\infty} \tfrac{1}{1-(-1)^{p_k -1}a^{\prime}( {p_k} ) p_k^{-s}} = \tfrac{1}{1+a^{\prime}( {2} ) 2^{-s}}\prod_{k=2}^{\infty} \tfrac{1}{1-a^{\prime}( {p_k} ) p_k^{-s}}$$

I was hoping for an analytic continuation of the product over primes but this product differs from the original Euler product by only one term hence converges in the same region. I had hoped to follow this up with the rest of the steps to globally analytically continue the zeta function and wind up with a product over primes converging for all complex ##s\neq 1## but effecting the convergence of the Dirichlet series the Euler product is equal to didn't effect the convergence of the product itself. I think my problem may be that I need to be working with absolute convergence? Do you understand what I'm trying to do? How can I do that?

Edit: sorry if this is an easy one but I just started on these and I have no text on it.
 
Last edited:
  • Like
Likes Delta2
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top