Dustinsfl
- 2,217
- 5
Factor the matrix into the form QR where Q is orthogonal and R is upper triangular.
\begin{bmatrix}<br /> a & b\\ <br /> c & d<br /> \end{bmatrix}*\begin{bmatrix}<br /> e & f\\ <br /> 0 & g<br /> \end{bmatrix}=\begin{bmatrix}<br /> -1 & 3\\ <br /> 1 & 5<br /> \end{bmatrix}
\begin{bmatrix}<br /> a & c <br /> \end{bmatrix}*\begin{bmatrix}<br /> b\\ <br /> d<br /> \end{bmatrix}=0
ae=-1
af+bg=3
ce=1
cf+dg=5
Skipping some steps but I arrive at:\begin{bmatrix}<br /> 1 & \frac{4}{g}\\ <br /> -1 & \frac{4}{g}<br /> \end{bmatrix}*\begin{bmatrix}<br /> -1 & -1\\ <br /> 0 & g<br /> \end{bmatrix}=\begin{bmatrix}<br /> -1 & 3\\ <br /> 1 & 5<br /> \end{bmatrix}
So as long as g \neq 0 it is all good?
\begin{bmatrix}<br /> a & b\\ <br /> c & d<br /> \end{bmatrix}*\begin{bmatrix}<br /> e & f\\ <br /> 0 & g<br /> \end{bmatrix}=\begin{bmatrix}<br /> -1 & 3\\ <br /> 1 & 5<br /> \end{bmatrix}
\begin{bmatrix}<br /> a & c <br /> \end{bmatrix}*\begin{bmatrix}<br /> b\\ <br /> d<br /> \end{bmatrix}=0
ae=-1
af+bg=3
ce=1
cf+dg=5
Skipping some steps but I arrive at:\begin{bmatrix}<br /> 1 & \frac{4}{g}\\ <br /> -1 & \frac{4}{g}<br /> \end{bmatrix}*\begin{bmatrix}<br /> -1 & -1\\ <br /> 0 & g<br /> \end{bmatrix}=\begin{bmatrix}<br /> -1 & 3\\ <br /> 1 & 5<br /> \end{bmatrix}
So as long as g \neq 0 it is all good?