fresh_42 said:Do you know what ##2^i## means?
I know. And with another letter: ##2^n## is simply a short form of multiplying ##2## with itself ##n## times.Morgan Chafe said:Apparently I do not. To clarify, I'm not working with imaginary, "i" is just the variable they choose.
fresh_42 said:I know. And with another letter: ##2^n## is simply a short form of multiplying ##2## with itself ##n## times.
##2^0 = 1## (convention), ##2^1 = 2, 2^2 = 2 \cdot 2 = 4, 2^3= 2 \cdot 2 \cdot 2 =8## and so on.
That's why ##(\frac{a}{b})^n = \frac{a}{b} \cdot ... \cdot \frac{a}{b} (n ## times ##) = \frac{a \cdot ... \cdot a }{b \cdot ... \cdot b} ## each ## n ## times.Morgan Chafe said:Okay. But I'm still not sure on why they can factor out ##\frac{2^{i}}{5^{i}}## algebraically. I get that you can take the 2 out from the top and the 5 from the bottom but how do they get an exponent too?
fresh_42 said:That's why ##(\frac{a}{b})^n = \frac{a}{b} \cdot ... \cdot \frac{a}{b} (n ## times ##) = \frac{a \cdot ... \cdot a }{b \cdot ... \cdot b} ## each ## n ## times.
##(\frac{2}{5})^3 = \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5} = \frac{2^3}{5^3}##
And ##2## is contained in every single factor of the nominator and ##5## in every single factor of the denominator.
##2 \cdot 4 \cdot 6 \cdot \cdot \cdot 2i = (2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3) \cdot \cdot \cdot (2 \cdot i) = [ 2 \cdot 2 \cdot 2 \cdot \cdot \cdot (i ## times ##) \cdot \cdot \cdot 2] \cdot [1 \cdot 2 \cdot 3 \cdot \cdot \cdot i] = 2^i \cdot i!##Morgan Chafe said:Sorry, I still don't follow.
fresh_42 said:##2 \cdot 4 \cdot 6 \cdot \cdot \cdot 2i = (2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3) \cdot \cdot \cdot (2 \cdot i) = [ 2 \cdot 2 \cdot 2 \cdot \cdot \cdot (i ## times ##) \cdot \cdot \cdot 2] \cdot [1 \cdot 2 \cdot 3 \cdot \cdot \cdot i] = 2^i \cdot i!##
and the same with ##5## in the denominator. Then ##i!## cancels out and ##\frac{2^i}{5^i} = (\frac{2}{5})^i## is left.