Fermi-Dirac distribution at T->0 and \mu->\epsilon_0

AI Thread Summary
The limit of the Fermi-Dirac distribution as temperature approaches zero and chemical potential approaches Fermi energy is calculated to be 1/2. There is confusion regarding the transition from energy levels ε_k to the Fermi energy ε_F, which is essential for understanding the behavior of particles at absolute zero. As temperature approaches zero, the occupation probability f behaves differently based on the relationship between ε_k and ε_F. Specifically, for ε_k greater than ε_F, f approaches 0, while for ε_k less than ε_F, f approaches 1. At ε_k equal to ε_F, the occupation probability is consistently 1/2 for any non-zero temperature.
mcas
Messages
22
Reaction score
5
Homework Statement
Starting with F-C distrubution for ##T>0##
$$f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^{-1}$$
derive a distrubution at limit of ##T->0## when ##\mu(T)-> \epsilon_F##
Relevant Equations
##f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^(-1)##
##\mu(T=0)=\epsilon_F##
The limit itself is pretty easy to calculate
##lim_{T->0} \ lim_{\mu->\epsilon_F} \ (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}##

But I'm very confused about changing ##\epsilon_\vec{k}## to ##\epsilon_F##. Why do we do this?
 
Physics news on Phys.org
Depending on ##\epsilon_k## with comparison to Fermi energy as T ##\rightarrow## 0,
For ##\epsilon_k > \epsilon_f ## ##f \rightarrow ?##
For ##\epsilon_k < \epsilon_f ## ##f \rightarrow ?##
and
For ##\epsilon_k = \epsilon_f ## ##f = 1/2## for any temperature ##T \neq 0##.
 
Last edited:
  • Like
  • Love
Likes mcas and DrClaude
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top