Fermi-Dirac distribution at T->0 and \mu->\epsilon_0

Click For Summary
SUMMARY

The discussion centers on the Fermi-Dirac distribution as temperature approaches zero and chemical potential approaches Fermi energy. The limit is established as lim_{T->0} lim_{\mu->\epsilon_F} (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}. The confusion arises from the transition of energy states \epsilon_k to Fermi energy \epsilon_F, particularly in determining the behavior of the Fermi-Dirac distribution for energy states above, below, and equal to the Fermi energy.

PREREQUISITES
  • Understanding of Fermi-Dirac statistics
  • Knowledge of thermodynamic limits in statistical mechanics
  • Familiarity with concepts of chemical potential and Fermi energy
  • Basic proficiency in mathematical notation and limits
NEXT STEPS
  • Study the implications of Fermi energy in solid-state physics
  • Explore the mathematical derivation of the Fermi-Dirac distribution
  • Investigate the behavior of particles at absolute zero temperature
  • Learn about the significance of the Fermi energy in electron behavior in metals
USEFUL FOR

Physicists, particularly those specializing in condensed matter physics, students studying statistical mechanics, and researchers focused on quantum statistics and thermodynamics.

mcas
Messages
22
Reaction score
5
Homework Statement
Starting with F-C distrubution for ##T>0##
$$f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^{-1}$$
derive a distrubution at limit of ##T->0## when ##\mu(T)-> \epsilon_F##
Relevant Equations
##f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^(-1)##
##\mu(T=0)=\epsilon_F##
The limit itself is pretty easy to calculate
##lim_{T->0} \ lim_{\mu->\epsilon_F} \ (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}##

But I'm very confused about changing ##\epsilon_\vec{k}## to ##\epsilon_F##. Why do we do this?
 
Physics news on Phys.org
Depending on ##\epsilon_k## with comparison to Fermi energy as T ##\rightarrow## 0,
For ##\epsilon_k > \epsilon_f ## ##f \rightarrow ?##
For ##\epsilon_k < \epsilon_f ## ##f \rightarrow ?##
and
For ##\epsilon_k = \epsilon_f ## ##f = 1/2## for any temperature ##T \neq 0##.
 
Last edited:
  • Like
  • Love
Likes   Reactions: mcas and DrClaude

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K