Fermi-Dirac distribution at T->0 and \mu->\epsilon_0

mcas
Messages
22
Reaction score
5
Homework Statement
Starting with F-C distrubution for ##T>0##
$$f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^{-1}$$
derive a distrubution at limit of ##T->0## when ##\mu(T)-> \epsilon_F##
Relevant Equations
##f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^(-1)##
##\mu(T=0)=\epsilon_F##
The limit itself is pretty easy to calculate
##lim_{T->0} \ lim_{\mu->\epsilon_F} \ (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}##

But I'm very confused about changing ##\epsilon_\vec{k}## to ##\epsilon_F##. Why do we do this?
 
Physics news on Phys.org
Depending on ##\epsilon_k## with comparison to Fermi energy as T ##\rightarrow## 0,
For ##\epsilon_k > \epsilon_f ## ##f \rightarrow ?##
For ##\epsilon_k < \epsilon_f ## ##f \rightarrow ?##
and
For ##\epsilon_k = \epsilon_f ## ##f = 1/2## for any temperature ##T \neq 0##.
 
Last edited:
  • Like
  • Love
Likes mcas and DrClaude
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top