Fermi-Dirac distribution at T->0 and \mu->\epsilon_0

mcas
Messages
22
Reaction score
5
Homework Statement
Starting with F-C distrubution for ##T>0##
$$f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^{-1}$$
derive a distrubution at limit of ##T->0## when ##\mu(T)-> \epsilon_F##
Relevant Equations
##f(\epsilon_\vec{k})=(e^{\frac{(\epsilon_\vec{k} - \mu)}{kT}}+1)^(-1)##
##\mu(T=0)=\epsilon_F##
The limit itself is pretty easy to calculate
##lim_{T->0} \ lim_{\mu->\epsilon_F} \ (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}##

But I'm very confused about changing ##\epsilon_\vec{k}## to ##\epsilon_F##. Why do we do this?
 
Physics news on Phys.org
Depending on ##\epsilon_k## with comparison to Fermi energy as T ##\rightarrow## 0,
For ##\epsilon_k > \epsilon_f ## ##f \rightarrow ?##
For ##\epsilon_k < \epsilon_f ## ##f \rightarrow ?##
and
For ##\epsilon_k = \epsilon_f ## ##f = 1/2## for any temperature ##T \neq 0##.
 
Last edited:
  • Like
  • Love
Likes mcas and DrClaude
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top