Fermi Function at High Temperature

Click For Summary
At high temperatures, the Fermi-Dirac distribution approaches a constant value of 1/2, similar to its behavior when energy equals the Fermi energy. As temperature increases, the distribution transitions from a sharp to a broad and flat profile. In extreme cases, the Fermi-Dirac distribution aligns with the Boltzmann distribution, particularly when energy density is low. This indicates that the Fermi-Dirac distribution can be effectively replaced by the Boltzmann distribution under high-temperature conditions. Understanding this transition is crucial for accurately modeling particle behavior in thermal systems.
Parmenides
Messages
34
Reaction score
0
Hello,

A question I can't seem to find a simple answer to is, what happens to the Fermi-Dirac distribution at T grows large? Mathematics suggests that it approaches 1/2, like it does when the energy becomes equal to the Fermi energy. Or, are we not allowed to use the F-D distribution for high temperatures and have to use the Boltzmann distribution instead?
 
Science news on Phys.org
The transition, which is sharp for T near 0, broadens and flattens. In the extreme limit, it indeed approaches the constant 1/2. The Fermi-Dirac distribution approaches a Boltzmann distribution when the energy density is low (few particles per state) and the temperature is high.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K