A Feynman parametrization integration by parts

Click For Summary
The discussion focuses on transforming a complex integral expression using Feynman parametrization and integration by parts. The initial expression involves a product of terms with denominators raised to the third power, which is simplified through an identity that represents one of the terms as an integral. This process leads to a new form where the denominators are squared and involve absolute values, facilitating easier integration. The transformation highlights the utility of Feynman parametrization in simplifying integrals in quantum field theory contexts. Ultimately, the discussion illustrates a method for achieving a more manageable integral form.
asmae
Messages
1
Reaction score
0
TL;DR
Feynman parametrization integration by parts
How can i move from this expression:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}$$
to this one:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+|k-k_{i}|^2)^2} \frac{1}{(1+|k-k_{f}|^2)^2}$$
using Feynman parametrization (Integration by parts)
 
Last edited by a moderator:
Physics news on Phys.org
A:We start with \begin{align*}\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}\end{align*}and use the identity\begin{align*}\frac{1}{(1+i(k-k_f))^3} = \int_0^1 du \,(1-u)^2 \, e^{i (k-k_f) u}\end{align*}to obtain\begin{align*}&\frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u}}{k^2} \frac{1}{(1+i(k-k_{i}))^3} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u - i(k-k_i)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1) -i k_i (1+u)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1)}}{k^2(1+i(k-k_i + k_i(1+u)))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u
 
Abstract The gravitational effects of a Primordial Black Hole (PBH) passing through the human body are examined, with the goal of determining the minimum mass necessary to produce significant injury or death. Two effects are examined: The damage caused by a shock wave propagating outward from the black hole trajectory, and the dissociation of brain cells from tidal forces produced by the black hole on its passage through the human body. It is found that the former is the dominant effect...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
732
  • · Replies 6 ·
Replies
6
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K