Feynman parametrization integration by parts

Click For Summary
SUMMARY

The discussion focuses on transforming the integral expression $$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}$$ into $$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+|k-k_{i}|^2)^2} \frac{1}{(1+|k-k_{f}|^2)^2}$$ using Feynman parametrization and integration by parts. The transformation utilizes the identity $$\frac{1}{(1+i(k-k_f))^3} = \int_0^1 du \,(1-u)^2 \, e^{i (k-k_f) u}$$ to facilitate the integration process. This method effectively simplifies the original expression into a more manageable form.

PREREQUISITES
  • Feynman parametrization techniques
  • Complex analysis fundamentals
  • Integration by parts methodology
  • Understanding of Fourier transforms
NEXT STEPS
  • Study Feynman parametrization applications in quantum field theory
  • Explore advanced integration techniques in complex analysis
  • Learn about the properties of Fourier transforms in physics
  • Investigate the implications of integration by parts in higher dimensions
USEFUL FOR

Physicists, mathematicians, and students engaged in theoretical physics, particularly those working with quantum field theory and complex integrals.

asmae
Messages
1
Reaction score
0
TL;DR
Feynman parametrization integration by parts
How can i move from this expression:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}$$
to this one:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+|k-k_{i}|^2)^2} \frac{1}{(1+|k-k_{f}|^2)^2}$$
using Feynman parametrization (Integration by parts)
 
Last edited by a moderator:
Physics news on Phys.org
A:We start with \begin{align*}\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}\end{align*}and use the identity\begin{align*}\frac{1}{(1+i(k-k_f))^3} = \int_0^1 du \,(1-u)^2 \, e^{i (k-k_f) u}\end{align*}to obtain\begin{align*}&\frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u}}{k^2} \frac{1}{(1+i(k-k_{i}))^3} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u - i(k-k_i)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1) -i k_i (1+u)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1)}}{k^2(1+i(k-k_i + k_i(1+u)))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
876
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K