Graduate Feynman parametrization integration by parts

Click For Summary
The discussion focuses on transforming a complex integral expression using Feynman parametrization and integration by parts. The initial expression involves a product of terms with denominators raised to the third power, which is simplified through an identity that represents one of the terms as an integral. This process leads to a new form where the denominators are squared and involve absolute values, facilitating easier integration. The transformation highlights the utility of Feynman parametrization in simplifying integrals in quantum field theory contexts. Ultimately, the discussion illustrates a method for achieving a more manageable integral form.
asmae
Messages
1
Reaction score
0
TL;DR
Feynman parametrization integration by parts
How can i move from this expression:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}$$
to this one:
$$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+|k-k_{i}|^2)^2} \frac{1}{(1+|k-k_{f}|^2)^2}$$
using Feynman parametrization (Integration by parts)
 
Last edited by a moderator:
Physics news on Phys.org
A:We start with \begin{align*}\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}\end{align*}and use the identity\begin{align*}\frac{1}{(1+i(k-k_f))^3} = \int_0^1 du \,(1-u)^2 \, e^{i (k-k_f) u}\end{align*}to obtain\begin{align*}&\frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u}}{k^2} \frac{1}{(1+i(k-k_{i}))^3} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i (k-k_f) u - i(k-k_i)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1) -i k_i (1+u)}}{k^2(1+i(k-k_i))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u)^2 \, \int dk \frac{e^{i k(u-1)}}{k^2(1+i(k-k_i + k_i(1+u)))^2} \\&= \frac{4}{\pi^{4}} \int_0^1 du \,(1-u
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
833
  • · Replies 6 ·
Replies
6
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K