Fft time axis for a signal that is a function of frequency

AI Thread Summary
The discussion revolves around performing a Fast Fourier Transform (FFT) on a signal defined by e^(jω+nδω)t, where the signal transitions through frequencies from ω to ω+(N-1)δω. The user seeks clarification on the relationship between time and frequency domains, particularly regarding the total duration T and the sampling period Δt. They express confusion about how the same mathematical principles apply across domains, noting that while 1/fs gives the total observation time in the frequency domain, it represents the sample period in the time domain. The user highlights discrepancies in the ranges of time and frequency domains, questioning the consistency of results when switching between them. Overall, they are looking for a clearer understanding of these concepts and their interrelations.
wattacatta
Messages
2
Reaction score
0
Hello!
I am attempting to do an FFT on a signal e^(jω+nδω)t, where t is constant and for n=0:N-1. This signal starts off at ω when n =0 and then increments in steps of δω until it reaches the final frequency ω+(N-1)δω.

Performing an FFT on this signal will put me in the time domain so my x-axis is time. I have been told that the waveform will have a total duration of T = 1/Δω and Δt will be 1/(N*Δω). I asked my instructor why that is the case and he told me that it is all the same as if I were working in the time domain, the FFT works the same whether I am working with time, frequency, or apples. However, I cannot see this. I have been searching online to try to find an explanation but all I can find is on going from time to frequency, not from frequency back to time.
The closest thing I found on physics forums:
https://www.physicsforums.com/showthread.php?t=236201

however, I can't post an entry to that thread. Also that thread confirms that T = 1/Δf and Δt = T/N = 1/(N*Δf), but doesn't really provide an explanation.

The way I see it, we get different results depending on what domain we are in:
When doing an FFT of a sampled time signal, you have a sampling frequency (fs) from which you can calculate the Sample Period(Ts) by just taking the inverse. We also know that in the frequency domain we will have frequency components in the range -fs/2 to fs/2.
But if you have a signal that we are essentially sampling in the frequency domain for a particular instant of time, "fs" is now possibly our Δω, so to get Ts, we can do 1/fs. But, this does not calculate Ts, rather it is Ttotal_observation_time (which in the time domain would be calculated as Ttot = (N-1)*Δt). I would jump for joy if the correct answer were that Δt = 1/Δf but it is not so, rather this is equal to the overall duration of the time domain signal.

So my confusion is that somehow, 1/fs yields the total observation time in the frequency domain, whereas in the time domain, it yields the sample period; Thus I think it does matter what domain I am in. Please someone help me see otherwise!If there is someone who can understand what I cannot see please provide me with some help that might make me understand. Thank you in advance!
 
Engineering news on Phys.org
Furthermore, the range in the time domain is now 0 to 1/Δf, which does not parallell the -fs/2 to fs/2 range in frequency in any way.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...

Similar threads

Replies
1
Views
2K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
8
Views
2K
Back
Top