Fibonacci Cubed Recurrence Relation

alec_tronn
Messages
29
Reaction score
0

Homework Statement


Find and prove the recurrence relation for the Fibonacci cubed sequence.

Homework Equations


By observation (blankly staring at the sequence for an hour) I've decided that the recurrence relation is G_{n} = 3G_{n-1} + 6G_{n-2} - 3G_{n-3} - G_{n-4}

(where G is Fibonacci cubed)

The Attempt at a Solution


My attempt was going to be to prove by induction, but for the n+1 case, I got:
G_{n+1} = G_{n} + F_{n}*F_{n+1}*F_{n-1} + G_{n-1}

Is there an identity that could get me further? Is there a different method anyone could suggest? Is there anything I can do at all?

edit: all that superscript is supposed to be subscript... I'm not sure what happened...
 
Last edited:
Physics news on Phys.org
I fear your question is esoteric enough that help will be hard to find without a definition of "fibonacci cubed" (or more specifically the sequence, since you do not know the relation). It doesn't seem like a hard question - just an obscure one. (Amusingly enough the first google result for "fibonacci cubed" is this thread!)

My guess is LaTeX fouled up because you didn't properly anchor the subscripts to something.
 
Last edited:
Since the Fibonacci sequence is 0,1,1,2,3,5,8,... the Fibonacci Cubed sequence is 0,1,1,8,27,125,512... it's just cubing each element of the Fibonacci sequence. Upon further research, I found that that rule was found and proven by Zeitlin and Parker and published in the Fibonacci Quarterly in 1963... not that I have access to that publication, but if any of you do, or find out how it was done, or have any advice, it'd be greatly appreciated!
 
I think an easier approach would be to solve a simpler case first. Have you tried deriving the equation for a "fibonacci square" sequence? I assume a similar approach would follow for your case:

Let H_n denote the nth fibonacci square

H_n = (F_n)^2 = (F_{n-1}+F_{n-2})^2 = H_{n-1} + H_{n-2} + 2F_{n-1}F_{n-2}

Using the substitution selectively that F_{n-1} = F_{n-2} + F_{n-3}, H_{n-1}+H_{n-2}+2F_{n-1}F_{n-2}=H_{n-1}+H_{n-2}+2(F_{n-2}+F_{n-3})F_{n-2} = H_{n-1}+H_{n-2}+2(F_{n-2})^2 + 2F_{n-2}F_{n-3}.

The trick is then to add and subtract (F_{n-3})^2:

H_{n-1}+2H_{n-2}+(F_{n-2})^2 + 2F_{n-2}F_{n-3} + (F_{n-3})^2 - (F_{n-3})^2 = 2H_{n-1}+2H_{n-2}-H_{n-3}.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top