MHB Filtration of a probability space

gnob
Messages
11
Reaction score
0
Hi again, I hope you can clarify me on this:

Consider a probability space $(\Omega,\mathcal{F},\mathbb{P})$ and let $\{\mathcal{F}_t\}_{0\leq t<\infty}$ be a filtration on it. Define
$\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t} \mathcal{F}_t \right)$ where $t \in [0,\infty).$

My question: Is $\mathcal{F}_{\infty} = \mathcal{F}$?

I came across with an answer that it is not, but I forgot the source nor I remember if there is a counterexample. Can anyone please help me? Thanks. Please also give me some reference on it.

Thanks, thanks, thanks...:o
 
Mathematics news on Phys.org
If in the definition of filtration we don't assume strict inclusion we get a counter example taking $\mathcal F_t=\mathcal G$, where the latest is a strictly contained $\sigma$-algebra.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top