Find 2 Unit Vectors at Angle π/3 with <3,4> using Dot Product

nameVoid
Messages
238
Reaction score
0
find 2 unit vectors that make an angle of pi/3 with <3,4>

<3,4>dot<a,b>=5/2=3a+4b
b=5/8-3/4 a

|<a,b>|=1
such that
a^2+25/64+15/16a+9/16 a^2=1
25/16 a^2+15/16/ a=39/64
100a^2+60a=39
a^2+3/5a=39/100
(a+3/10)^2=48/100
a=(4sqrt(3)+-3)/10
so
b=5/8-(12sqrt(3)+9)/40
=(200-96sqrt(3)-72)/320
=(128-96sqrt(3))/320
=(32-24sqrt(3))/80
=(8-6sqrt(3))/20
=(4-3sqrt(3))/10
so far so good

b=5/8-(12sqrt(3)-9)/40
=(200-96sqrt(3)+72)/320
=(272-96sqrt(3))/320
=(68-24sqrt(3))/80
=(34-12sqrt(3))/40
=(17-6sqrt(3))/20 // correct me if I am wrong
 
Physics news on Phys.org
hi nameVoid! :smile:

your method looks basically correct (but i haven't checked it)

however, it's really complicated

try first finding the vector perpendicular to (3,4) and with the same magnitude :wink:
 
The solution for b2 is incorrect by the book
 
nameVoid said:
b=5/8-3/4 a

|<a,b>|=1
such that
a^2+25/64+15/16a+9/16 a^2=1

shouldn't it be minus 15/16 ? :wink:
 
Ah yes my mistake
 
Looking at <3, 4>, you should have seen that <4, -3> is perpendicular without needing to write anything!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top