Find a basis for the space of 2x2 symmetric matrices

ryanclarkeatm
Messages
2
Reaction score
0
a)Find a basis for the space of 2x2 symmetric matrices. Prove that your answer is indeed a basis.
b)Find the dimension of the space of n x n symmetric matrices. Justify your answer.
 
Physics news on Phys.org
The space of 2x2 matrices is in general isomorphic to a very familiar space. Think about the way addition of matrices and scalar multiplication work, and you should figure this out (and if you think about this for a while, you might realize a more general property about finite vector spaces over a field). From there, you should realize that the symmetric matrices are a subspace. If you look at some examples of 2x2 symmetric matrices, you should see the pattern.
 
A general 2 by 2 symmetric matrix is of the form
\begin{bmatrix}a & b \\ b & c \end{bmatrix}
you should be able to get a basis and the dimension from that.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top