Find a root for this expression:

  • Thread starter Thread starter MaxwellPhill
  • Start date Start date
  • Tags Tags
    Expression Root
MaxwellPhill
Messages
4
Reaction score
0
cos(x)+cos(ix)+cos(x*i^3/2)+cos(x*i^1/2)=0 for x

I have spent a lot of time finding an analytic root to this equation without success. An analytic root may not exist. I don't know. It is roughly equal to (8facorial)^(1/8)
 
Mathematics news on Phys.org
I don't think there is an anaylitical solution and I am not sure that there even is a root.

x = 0 is closer than your x = 3.764350600, but that's only taken it down to 4 rather than 8.0003108.
 
Hmm..I ust realized for the expression above the root must be complex of the form i^1/4.

Trig functions of the form cosx+cosy =0 can be solved because of the product formula:

cos(x)+cox(y)=2*(cos((x+y)/2))*(cos((x-y)/2)))

but is there such a formula for cos(x)+cos(y)+cos(z) ?
 
I did some 3D Plots in mathematica to get a rough idea where a root might be and then used the FindRoot function and got that 1.4405686011239758 - 3.477840254362339i is approximatly a root.

I don't think there is any simplification like you want.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top