Find all the limit points and interior points (basic topology)

nalkapo
Messages
28
Reaction score
0

Homework Statement



Find all the limit points and interior points of following sets in R2
A={(x,y): 0<=x<=1, 0<=y<=1} *here I used "<=" symbol to name as "less then or equal".
B={1-1/n: n=1,2,3,...}

Homework Equations


The Attempt at a Solution


the limit point of B is 1 as n goes to infinity. because for the limit point, in the neighborhood there must be infinitely many points.
and I think the limit points of A must be all (x,y) values, because in the neighborhood ve can find infinitely many points in the neighborhood of all points.
my problem is with interior points.
How can I approach in order to find interior points? and what are the interior points of these sets?
 
Physics news on Phys.org
An interior point of a set A is a point, p, such that some neighborhood of p is contained in A. Look at, for example, points like (0, 1/2), or (1, 3/4), or (2/3, 1), etc. which lie on the lines bounding the rectangle. Any neighborhood must have some points on every side of the point and so some on the outside of the rectangle. Those cannot be interior points.

For the second case, you might want to actually write down some of the points:
0, 1/2, 2/3, 3/4, etc. Suppose you drew an interval, say, (1/4, 3/8) around 1/2 or (2/3- 1/24, 2/3+ 1/24) about 2/3? (1/24 is half of 1/12, the distance from 2/3 to 3/4.)
 
HallsofIvy said:
An interior point of a set A is a point, p, such that some neighborhood of p is contained in A. Look at, for example, points like (0, 1/2), or (1, 3/4), or (2/3, 1), etc. which lie on the lines bounding the rectangle. Any neighborhood must have some points on every side of the point and so some on the outside of the rectangle. Those cannot be interior points.

For the second case, you might want to actually write down some of the points:
0, 1/2, 2/3, 3/4, etc. Suppose you drew an interval, say, (1/4, 3/8) around 1/2 or (2/3- 1/24, 2/3+ 1/24) about 2/3? (1/24 is half of 1/12, the distance from 2/3 to 3/4.)

So, you mean (for B={1-1/n}) that for some points p, I cannot find a neighborhood which is a subset of B. for example in [1/4, 3/8] we cannot find any neighborhood which belongs to B. so, in B there is no interior points. Is that true?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top