Find $\angle BPC$ in Triangle ABC with $\angle ACB=\angle ABC=80^\circ$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Geometry
Click For Summary

Discussion Overview

The discussion revolves around finding the angle $\angle BPC$ in triangle ABC, where $\angle ACB=\angle ABC=80^\circ$ and point P is on line segment AB such that $BC=AP$. The scope includes geometric and trigonometric approaches to the problem.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants express confidence in their answers but struggle to provide proofs, indicating uncertainty about their conclusions.
  • Several participants propose geometric and trigonometric solutions, with some requesting hints or further clarification on others' approaches.
  • There are corrections and challenges to the proofs presented, particularly regarding the validity of certain assumptions or steps taken in the solutions.
  • One participant references a rich structure of the 80-80-20 triangle and mentions finding multiple solutions online, suggesting a variety of approaches exist.
  • Participants express confusion over specific details in diagrams and proofs, leading to further discussion and requests for clarification.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the correct approach or solution to the problem, with multiple competing views and ongoing debate about the validity of different proofs.

Contextual Notes

Some participants mention errors in diagrams and proofs, highlighting the complexity of the problem and the need for careful consideration of geometric relationships. There are unresolved questions regarding specific lengths and angles in the context of the proposed solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle ABC, $\angle ACB=\angle ABC=80^\circ$ and $P$ is on the line segment $AB$ such that $BC=AP$. Find $\angle BPC$.
 
Mathematics news on Phys.org
Let $AB = 2x = AC$ then $AP = PB = x$, use the cosine law in the triangle $APC$ we found that
$PC^2 = x^2 + 4x^2 - 2(x)(2x) \cos 20 = x^2 ( 5 - 4\cos 20)\Rightarrow PC = x \sqrt{5 - 4\cos 20} $

again

$AC^2 = PC^2 + AP^2 - 2(PC)(AP) \cos \angle APC$

$3x^2 = x^2 ( 5 -4 \cos 20) + - 2x^2 \sqrt{5 - 4 \cos 20} \cos \angle APC $

$3 = 5 - 4 \cos 20 - 2 \sqrt{5 - 4 \cos 20} \cos \angle APC $

$\cos APC = \frac{1 - 2\cos 20}{\sqrt{5 - 4 \cos 20}}= - 0.789$

$\angle BPC = 180 - \arccos( - 0.789 ) $
 
Amer said:
Let $AB = 2x = AC$ then $AP = PB = x$, use the cosine law in the triangle $APC$ we found that
$PC^2 = x^2 + 4x^2 - 2(x)(2x) \cos 20 = x^2 ( 5 - 4\cos 20)\Rightarrow PC = x \sqrt{5 - 4\cos 20} $

again

$AC^2 = PC^2 + AP^2 - 2(PC)(AP) \cos \angle APC$

$3x^2 = x^2 ( 5 -4 \cos 20) + - 2x^2 \sqrt{5 - 4 \cos 20} \cos \angle APC $

$3 = 5 - 4 \cos 20 - 2 \sqrt{5 - 4 \cos 20} \cos \angle APC $

$\cos APC = \frac{1 - 2\cos 20}{\sqrt{5 - 4 \cos 20}}= - 0.789$

$\angle BPC = 180 - \arccos( - 0.789 ) $

Hi Amer! Thanks for participating but I'm sorry...your answer isn't correct...:(
 
anemone said:
Hi Amer! Thanks for participating but I'm sorry...your answer isn't correct...:(
I understand the question in a wrong way I will edit my post :)
 
I'm quite certain I know the answer, but I can't prove it. If the following is the way you went, I'd appreciate a hint.
When I carefully draw the figure, I see that the circum center O of triangle PBC has the property that triangle OBC is equilateral. From this the desired angle is obvious, but why is OBC equilateral?
 
Trig proof:

WLOG, let $$\overline{BC}=1$$, so $$\overline{AP}=1$$. Construct segment $$\overline{PD}$$ such that $$D$$ lies on $$\overline{AC}$$ and $$\overline{PD}$$ is parallel to $$\overline{BC}$$.

$$\overline{PD}=2\cos80$$, so $$\dfrac{1}{\overline{PB}+1}=2\cos80\implies\overline{PB}=\dfrac{1-2\cos80}{2\cos80}$$

Let $$\angle{BPC}=\theta$$. Then

$$\begin{align*}\tan(\theta-10)&=\dfrac{\dfrac{1+2\cos80}{2}}{\dfrac{\cos10-2\cos10\cos80}{2\cos80}} \\
&=\dfrac{(1+2\cos80)\cos80}{\cos10-2\cos10\cos80} \\
&=\dfrac{\cos80+2\cos^280}{\cos10-\cos70} \\
&=\dfrac{\cos80+2\cos^280}{\sin40} \\
&=\dfrac{\cos80+1-\cos20}{\sin40} \\
&=\dfrac{1-\sin50}{\sin40} \\
&=\csc40-\cot40 \\
&=\tan20 \\
\theta-10&=20 \\
\theta=30^\circ\end{align*}$$
 

Attachments

  • measure of Angle BPC=30.jpg
    measure of Angle BPC=30.jpg
    12.2 KB · Views: 132
Albert said:
Geometric Solution:

Albert, please post attachments inline so that you can hide them using the spoiler tags. Also, I find your solution to be very hard to follow without the supporting computations. :)
 
johng said:
I'm quite certain I know the answer, but I can't prove it. If the following is the way you went, I'd appreciate a hint.
When I carefully draw the figure, I see that the circum center O of triangle PBC has the property that triangle OBC is equilateral. From this the desired angle is obvious, but why is OBC equilateral?

Hi johng,
I appreciate you taking the time to try this challenge out and I'm sorry as the solutions that I have don't use the method as you proposed so I think you have to rely on your own to figure out why OBC is equilateral...:)

And thanks to greg1313 for your trigonometric proof and Albert, I actually have hope to see your geometric proof to be back up by facts. :D
 
  • #10
Two circles with centers C and E
We have BC=CE=EP=AP
then $\angle A=\angle 1=20^o=2\angle 2$
$\therefore \angle 2=10^o,\,\, and \,\,\angle APE=140^o$
$\angle APC=150^o$ , so we get
$\angle BPC=30^o$
I am sure my geometric proof is back up by facts.
 
Last edited:
  • #11
Albert,
I believe you have made an error in your proof. Here's why I think this:

21c8qib.png
 
Last edited by a moderator:
  • #12
johng said:
Albert,
I believe you have made an error in your proof. Here's why I think this:
from my diagram point E is on segment AC
no error I am sure,please check again
 
  • #13
anemone said:
In triangle ABC, $\angle ACB=\angle ABC=80^\circ$ and $P$ is on the line segment $AB$ such that $BC=AP$. Find $\angle BPC$.
The 80-80-20 triangle has a very rich structure, and is the source of many good problems. I remember coming across some of them when I was a teenager, 60 years ago. I found this particular problem on the internet, here, with links to seven different solutions. They are all interesting, especially Solutions #1–#3, which all use different (ingenious and elegant) geometric constructions.
 
  • #14
Albert,
My apologies. In your diagram, I didn't understand why |PE|=|BC| (I still can't see this). I then got all excited and drew the wrong diagram.
OpalG, I read the first three solutions in your link and I agree completely that they are elegant and ingenious. Thanks much for the link.
 
  • #15
johng said:
Albert,
My apologies. In your diagram, I didn't understand why |PE|=|BC| (I still can't see this). I then got all excited and drew the wrong diagram.
OpalG, I read the first three solutions in your link and I agree completely that they are elegant and ingenious. Thanks much for the link.
please see my post #10
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K