MHB Finding $b(a+c)$ for Real Roots of $\sqrt{2014}x^3-4029x^2+2=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a>b>c$ be the real roots of the equation $\sqrt{2014}x^3-4029x^2+2=0$. Find $b(a+c)$.
 
Mathematics news on Phys.org
To avoid radicals let $\sqrt{2014}=p$
So we get $px^3-(2p^2+1)x^2 +2 = 0$
Or factoring we get $(px-1)(x^2-2px-2)$ = 0
So one root is $x= \frac{1}{p}$ and other two roots are roots of $x^2-2px-2=0$
For the equation $x^2-2px-2=0$ sum of the roots is 2p and product is -2. so one root has to be -ve and
the postiive root shall be above 2p
So $b=\frac{1}{p}\cdots(1)$
And c is the -ve root and $a> 2p$
a,c are roots of $x^2-2px-2=0$ so $a+c = 2p\cdots(2)$
Hence $b(a+c) = 2$ using (1) and (2)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top