Find Current I1 in 7.5 Ω Resistor with Kirchhoff's Rule

  • Thread starter Thread starter deenuh20
  • Start date Start date
  • Tags Tags
    Current Resistor
AI Thread Summary
To find the current I1 through a 7.5 Ω resistor using Kirchhoff's Rule, the user attempted to calculate equivalent resistances and break down the total current into I1 and I2. Despite following the correct approach, they did not arrive at the expected answer of 0.65 A. Other participants confirmed that the method used was valid and suggested reviewing the calculations for potential errors. Sharing the detailed working steps was recommended for further assistance. Accurate application of Kirchhoff's rules is essential for solving such circuit problems effectively.
deenuh20
Messages
50
Reaction score
0

Homework Statement


In the circuit below: (a) Find the current I1 that passes through the 7.5 Ω resistor.



Homework Equations



Kirchhoff's Rule--Loops

The Attempt at a Solution


This was a problem in my textbook. The answer is .65 A, but I don't understand how to get that. I tried Kirchhoff's rule by finding equivalent R between A & B and Then finding equivalent R between A & C then finding I, Then breaking I into I1 and I2 (according to the parallel resistances between A & B)

However, I still didn't get the answer, .65 A. Was my approach correct, or is there another way? Thank you.
 

Attachments

  • Circuit 2.jpg
    Circuit 2.jpg
    8.4 KB · Views: 459
Physics news on Phys.org
Your plan of how to solve it is OK, and when I did it that way I got 0.65A.

If you can't find your mistake, show your working, then somebody can check through it.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top