Find domain where function is Lipschitz

Click For Summary
The discussion focuses on determining the Lipschitz condition for vector-valued functions defined in a subset of R^3. The participants explore the application of the mean value theorem to vector functions and consider bounding the difference between function outputs. They suggest calculating the norm of the difference between function values and express it in terms of positive functions A, B, and C. There is a specific concern about handling the second term in the Euclidean norm for one of the functions, which lacks a certain coordinate. The conversation concludes with the idea that a vector-valued function is Lipschitz if all its components satisfy the condition.
psie
Messages
315
Reaction score
40
Homework Statement
Reduce the ODEs ##x'''+x^2=1, x''=x^{-1/2}## and ##x''=\sqrt{1+(x')^2}## to a system of first order and find a naturally defined region ##\Omega## where the right hand side satisfies a Lipschitz condition.
Relevant Equations
##f## satisfies a Lipschitz condition in the ##x##-variable in a set ##\Omega## if ##\lVert f(t,x)-f(t,y)\rVert\leq L\lVert x-y\rVert##, for some positive constant ##L##.
The reduction is simple in all cases. For the first one, put ##x_1=x, x_2=x'## and ##x_3=x''##. Let ##\pmb{x}=(x_1,x_2,x_3)##. Then we get $$\pmb{x}'= \begin{pmatrix}x_1' \\ x_2' \\ x_3' \end{pmatrix}=\begin{pmatrix}x_2 \\ x_3 \\ 1-x_1^2 \end{pmatrix}=\pmb{f}(\pmb{x}),$$ where ##\pmb{f}(\pmb{x})=(f_1(\pmb{x}),f_2(\pmb{x}),f_3(\pmb{x}))=(x_2,x_3,1-x_1^2)##.

Similarly, ##\pmb{g}(\pmb{x})=(x_2,x_1^{-1/2})## and ##\pmb{h}(\pmb{x})=(x_2,\sqrt{1+(x_2)^2})## for the other two ODEs.

In the first case, I'm interested in finding a subset of ##\mathbb R^3## such that I can bound ##\lVert \pmb{f}(\pmb{x})-\pmb{f}(\pmb{x})\rVert##. I'm unsure how to approach this in all cases, whether to use the definition of some norm directly or the mean value theorem. In the latter case, I'm unsure how the mean value theorem applies to vector-valued functions of a vector. Anyway, grateful for any help.
 
Last edited:
Physics news on Phys.org
Perhaps start by calculating f(x) - f(y), and see if you can write <br /> \|f(x) - f(y)\|^2 = A(x,y)|x_1 - y_1|^2 + B(x,y)|x_2 - y_2|^2 + C(x,y)|x_3 - y_3|^2 for positive functions A, B and C. How can you then guarantee that <br /> \|f(x) - f(y)\|^2 \leq L^2\|x - y\|^2 for some L &gt; 0?
 
Good idea, however, when it comes to ##\pmb{h}(\pmb{x})=(x_2,\sqrt{1+(x_2)^2})##, there is no ##x_1## coordinate included in the components. Maybe this is not a problem. Using the Euclidean norm: $$\lVert \pmb{h}(\pmb{x})-\pmb{h}(\pmb{y})\rVert^2=(x_2-y_2)^2+\left(\sqrt{1+x_2^2}-\sqrt{1+y_2^2}\right)^2 $$ How can I handle the second term, i.e. ##\left(\sqrt{1+x_2^2}-\sqrt{1+y_2^2}\right)^2##, so that it potentially doesn't cause any trouble?

As an alternative approach, I think a vector-valued function is Lipschitz iff all of its components are. Therefor we can apply the mean value theorem to the components, which is fairly simple in this case.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...