Find electric field inside a material

AI Thread Summary
The discussion focuses on finding the electric field inside an insulating material with a dielectric constant K when subjected to an external electric field E0. The user derives the equations for the electric displacement field D and the electric field E, noting that E can be expressed as E = E0/K. However, there is confusion regarding the applicability of the derived equations, particularly in relation to point charges and vector versus scalar distinctions. It is emphasized that the equation for E0 is not suitable for this scenario, as it pertains to point charges rather than the uniform field context. The conversation highlights the need for clarity in applying equations to different physical situations.
Istiak
Messages
158
Reaction score
12
Homework Statement
An infinite slab of insulating material with
dielectric constant K and permittivity ##\epsilon = K \epsilon_0## is placed in a uniform electric field of magnitude ##E_0## . The field is perpendicular to the surface of the material. Find the magnitude of the electric field inside the material.]
Relevant Equations
##\vec D=\epsilon\vec E##

##\oint \vec D\cdot d\vec a=q_{f_{enc}}##
From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that

##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##

So easily, ##\vec E= \frac{\vec E_0}{K}##

Or should I do the process some other way?
 
Physics news on Phys.org
Istiakshovon said:
Homework Statement:: An infinite slab of insulating material with
dielectric constant K and permittivity ##\epsilon = K \epsilon_0 is placed in a uniform electric field of magnitude ##E_0## . The field is perpendicular to the surface of the material. Find the magnitude of the electric field inside the material.]
Relevant Equations:: ##\vec D=\epsilon\vec E##

##\oint \vec D\cdot d\vec a=q_{f_{enc}}##

From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that

##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##

So easily, ##\vec E= \frac{\vec E_0}{K}##

Or should I do the process some other way?
This may help:

Electric field inside a material

 
Istiakshovon said:
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##
That's the field a distance r from an isolated point charge (or outside a spherically symmetric charge-distribution where r is the distance to the centre). So the equation is not applicable here.

(Also the left side of the equation is a vector but the right side is a scalar.)
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top