Find electric field inside a material

AI Thread Summary
The discussion focuses on finding the electric field inside an insulating material with a dielectric constant K when subjected to an external electric field E0. The user derives the equations for the electric displacement field D and the electric field E, noting that E can be expressed as E = E0/K. However, there is confusion regarding the applicability of the derived equations, particularly in relation to point charges and vector versus scalar distinctions. It is emphasized that the equation for E0 is not suitable for this scenario, as it pertains to point charges rather than the uniform field context. The conversation highlights the need for clarity in applying equations to different physical situations.
Istiak
Messages
158
Reaction score
12
Homework Statement
An infinite slab of insulating material with
dielectric constant K and permittivity ##\epsilon = K \epsilon_0## is placed in a uniform electric field of magnitude ##E_0## . The field is perpendicular to the surface of the material. Find the magnitude of the electric field inside the material.]
Relevant Equations
##\vec D=\epsilon\vec E##

##\oint \vec D\cdot d\vec a=q_{f_{enc}}##
From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that

##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##

So easily, ##\vec E= \frac{\vec E_0}{K}##

Or should I do the process some other way?
 
Physics news on Phys.org
Istiakshovon said:
Homework Statement:: An infinite slab of insulating material with
dielectric constant K and permittivity ##\epsilon = K \epsilon_0 is placed in a uniform electric field of magnitude ##E_0## . The field is perpendicular to the surface of the material. Find the magnitude of the electric field inside the material.]
Relevant Equations:: ##\vec D=\epsilon\vec E##

##\oint \vec D\cdot d\vec a=q_{f_{enc}}##

From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that

##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##

So easily, ##\vec E= \frac{\vec E_0}{K}##

Or should I do the process some other way?
This may help:

Electric field inside a material

 
Istiakshovon said:
While writing the comment my mind said, ##\vec E_0=\frac{q}{4\pi \vec r^2 \epsilon_0}##
That's the field a distance r from an isolated point charge (or outside a spherically symmetric charge-distribution where r is the distance to the centre). So the equation is not applicable here.

(Also the left side of the equation is a vector but the right side is a scalar.)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top