MHB Find First Term in Arithmetic Series | Alycia's Question

Click For Summary
To find the first term of an arithmetic series when given the number of terms (n), common difference (d), and sum (Sn), the formula a1 = (2Sn - n(n-1)d) / (2n) can be used. In the example provided, with d = 6, Sn = 574, and n = 14, substituting these values into the formula yields a1 = 2. The calculations involve applying known summation results for series. This method effectively determines the first term in the series. Understanding this formula simplifies the process of finding the first term in similar arithmetic series problems.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to find the first term in an arithmetic series?

I missed a day of math so now I have to catch up. How do you find the first term of an arithmetic series when given the number of terms (n), the common difference (d), and the sum (Sn)? The solution is probably obvious and I'm just making it more complicated than it actually is.
Here's a question from the book: Determine the value of the first term (t1) for each arithmetic series described.
d = 6, Sn = 574, n = 14
I know that the answer is 2 (I checked the back of the book), but I can't figure out how to get that answer.
Thanks for anyone her helps. :)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Alycia,

I would begin by writing the series as follows:

$$S_n=\sum_{k=0}^{n-1}\left(a_1+k\cdot d \right)$$

Next, we may use the following:

$$\sum_{k=k_i}^{k_f}\left(f(k)\pm g(k) \right)=\sum_{k=k_i}^{k_f}\left(f(k) \right)\pm\sum_{k=k_i}^{k_f}\left(g(k) \right)$$

to write:

$$S_n=\sum_{k=0}^{n-1}\left(a_1 \right)+\sum_{k=0}^{n-1}\left(k\cdot d \right)$$

Then, we may use the following:

$$\sum_{k=k_i}^{k_f}\left(a\cdot f(k) \right)=a\cdot\sum_{k=k_i}^{k_f}\left(f(k) \right)$$

where $a$ is a constant, to write:

$$S_n=a_1\cdot\sum_{k=0}^{n-1}\left(1 \right)+d\cdot\sum_{k=0}^{n-1}\left(k \right)$$

Next, we may utilize the following well-known summation results:

$$\sum_{k=1}^n(1)=n$$

$$\sum_{k=1}^n(k)=\frac{n(n+1)}{2}$$

to write:

$$S_n=a_1n+d\frac{n(n-1)}{2}$$

Solving for $a_1$, we find:

$$a_1=\frac{2S_n-n(n-1)d}{2n}$$

Finally, plugging in the given data, we find:

$$a_1=\frac{2\cdot574-14\cdot13\cdot6}{2\cdot14}=2$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
4K