- #1
vanceEE
- 109
- 2
px = t
t = s^2
$$ I = \int_0^∞ e^{-s^2}ds$$
$$I*I = \int_0^∞ e^{-s^2}ds * \int_0^∞ e^{-u^2}du = \int_0^∞\int_0^∞ e^{-(s^2+u^2)}du ds$$
$$s = rsin\theta $$
$$u = rcos\theta $$
$$r = s^2 + u^2 $$
$$ I*I = \int_0^∞\int_\alpha^\beta e^-{r^2}rdrd\theta$$
How can I find my limits of integration in polar coordinates?
t = s^2
$$ I = \int_0^∞ e^{-s^2}ds$$
$$I*I = \int_0^∞ e^{-s^2}ds * \int_0^∞ e^{-u^2}du = \int_0^∞\int_0^∞ e^{-(s^2+u^2)}du ds$$
$$s = rsin\theta $$
$$u = rcos\theta $$
$$r = s^2 + u^2 $$
$$ I*I = \int_0^∞\int_\alpha^\beta e^-{r^2}rdrd\theta$$
How can I find my limits of integration in polar coordinates?
Last edited: