Find max(abs(a)+abs(b)+abs(c)), and a possible f(x)

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on maximizing the expression max(abs(a) + abs(b) + abs(c)) for the quadratic function f(x) = ax^2 + bx + c, constrained by |f(x)| ≤ 1 for all x in the interval [0, 1]. By evaluating f(0), f(1), and f(1/2), participants derived that |a| + |b| + |c| is bounded by 17. The analysis utilized the triangle inequality to establish these bounds, confirming that the maximum achievable sum of the absolute values of coefficients a, b, and c is 17.

PREREQUISITES
  • Understanding of quadratic functions and their properties
  • Familiarity with the triangle inequality in mathematical analysis
  • Knowledge of absolute values and their implications in inequalities
  • Basic calculus concepts, particularly evaluating functions over intervals
NEXT STEPS
  • Study the properties of quadratic functions under constraints
  • Learn about the triangle inequality and its applications in optimization problems
  • Explore advanced techniques in mathematical analysis for bounding functions
  • Investigate the implications of absolute value constraints in polynomial functions
USEFUL FOR

Mathematicians, students studying calculus or optimization, and anyone interested in polynomial function analysis and inequalities.

Albert1
Messages
1,221
Reaction score
0
$given\,\,f(x)=ax^2+bx+c$
$if \,\,for\,\,all\,\,x \in [0,1]\,\, we\,\, have\left | f(x) \right |\leq1$
$find \,\, max(\left | a \right |+\left | b \right |+\left | c\right |)$
$and \,\, a\,\, possible \,\, f(x)$
 
Physics news on Phys.org
Given $f(x) = ax^2+bx+c$ and $0 \leq x\leq 1$ and $|f(x)|\leq 1$Put $x=0$ in $f(x)\;,$ We get $f(0) = c$ and put $x=1\;,$ We get $f(1) = a+b+c$and put $\displaystyle x=\frac{1}{2}\;,$ We get $\displaystyle f\left(\frac{1}{2}\right) = \frac{a}{4}+\frac{b}{2}+c\Rightarrow 4f(1) = a+2b+4c$So Using $\triangle$ Inequality::$\displaystyle |a| = \mid 2f(1)-4f\left(\frac{1}{2}\right)+2f(0)\mid \leq 2|f(1)|+4\mid f\left(\frac{1}{2}\right)\mid+2|f(0)|\leq 8$$\displaystyle |b| = \mid-f(1)-4f\left(\frac{1}{2}\right)-3f(0)\mid \leq |f(1)|+4\mid f\left(\frac{1}{2}\right)\mid+3|f(0)|\leq 8$

$|c|\leq 1$So we get $|a|+|b|+|c| \leq 8+8+1 \leq 17$
 
jacks said:
Given $f(x) = ax^2+bx+c$ and $0 \leq x\leq 1$ and $|f(x)|\leq 1$Put $x=0$ in $f(x)\;,$ We get $f(0) = c$ and put $x=1\;,$ We get $f(1) = a+b+c$and put $\displaystyle x=\frac{1}{2}\;,$ We get $\displaystyle f\left(\frac{1}{2}\right) = \frac{a}{4}+\frac{b}{2}+c\Rightarrow 4f(1) = a+2b+4c$So Using $\triangle$ Inequality::$\displaystyle |a| = \mid 2f(1)-4f\left(\frac{1}{2}\right)+2f(0)\mid \leq 2|f(1)|+4\mid f\left(\frac{1}{2}\right)\mid+2|f(0)|\leq 8$$\displaystyle |b| = \mid-f(1)-4f\left(\frac{1}{2}\right)-3f(0)\mid \leq |f(1)|+4\mid f\left(\frac{1}{2}\right)\mid+3|f(0)|\leq 8$

$|c|\leq 1$So we get $|a|+|b|+|c| \leq 8+8+1 \leq 17$
one example of $f(x)$ : $a=8,b=-8,c=-1,\,\, we \,\, get \,\, f(x)=8x^2-8x-1$
$which \,\,max(|a|+|b|+|c|) =8+8+1 =17\,\,meets$
also for all $0 \leq x\leq 1 ,$ $|f(x)|\leq 1$
 
Last edited:
Albert said:
one example of $f(x)$ : $a=8,b=-8,c=-1,\,\, we \,\, get \,\, f(x)=8x^2-8x-1---(*)$
$which \,\,max(|a|+|b|+|c|) =8+8+1 =17\,\,meets$
also for all $0 \leq x\leq 1 ,$ $|f(x)|\leq 1$
a typo in $(*):$
$a=8,b=-8,c=1$
$f(x)=8x^2-8x+1$
$which \,\,max(|a|+|b|+|c|) =8+8+1 =17\,\,meets$
also for all $0 \leq x\leq 1 ,$ $|f(x)|\leq 1$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K