Albert1
- 1,221
- 0
$a,b,c>0$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
nice solution !jacks said:My Solution:
Given $$a+b+c = k$$ and $$a,b,c>0$$
Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$
Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number
$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$
and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
Albert said:$a,b,c>0$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$