MHB Find Min Value: $a,b,c>0$ with $a+b+c=k$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Albert1
Messages
1,221
Reaction score
0
$a,b,c>0$

$a+b+c=k$

find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
 
Mathematics news on Phys.org
My Solution:

Given $$a+b+c = k$$ and $$a,b,c>0$$

Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$

Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number

$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$

and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
 
Last edited by a moderator:
jacks said:
My Solution:

Given $$a+b+c = k$$ and $$a,b,c>0$$

Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$

Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number

$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$

and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
nice solution !
 
Albert said:
$a,b,c>0$

$a+b+c=k$

find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
 

Attachments

  • minimum (AB+BC+EF).jpg
    minimum (AB+BC+EF).jpg
    18.2 KB · Views: 86
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top