RyanH42
- 398
- 16
I found the answer The question is not about ##\vec{T}## or ##\vec{N}##.We are in wrong way the equation is ##\vec{a}=d^2s/dt^2(\vec{T}+k\vec{N})## here the components is ##d^2s/dt^2## for ##\vec{T}## and ##d^2s/dt^2k## for ##\vec{N}##.
##ds/dt=√(1+(dy/dx)^2)##
##y=(t^2+1)\vec{j}## → ##dy =2t\vec{j}##,
##x=t\vec{i}## →##dx=t\vec{j}##
##ds/dt=√(1+(2t/1)^2)##
##d^2s/dt^2=8t/2√(1+4t^2)=4t/√(1+4t^2)##
Which I checked I found the right answer.I will do the same thing for ##\vec{N}## but there's k. k=magnitude of ##d\vec{T}/ds##. ##d\vec{T}/ds=d\vec{T}/dt/(ds/dt)## ##d\vec{T}/dt=2j## and ##ds/dt=√(1+(2t/1)^2)## so ##d\vec{T}/ds=2j/√(1+(4t^2)## and the magnitude is ##2/√(1+(4t^2)## but the answer is 2/(1+(4t^2)3/2
What I am missing ?
##ds/dt=√(1+(dy/dx)^2)##
##y=(t^2+1)\vec{j}## → ##dy =2t\vec{j}##,
##x=t\vec{i}## →##dx=t\vec{j}##
##ds/dt=√(1+(2t/1)^2)##
##d^2s/dt^2=8t/2√(1+4t^2)=4t/√(1+4t^2)##
Which I checked I found the right answer.I will do the same thing for ##\vec{N}## but there's k. k=magnitude of ##d\vec{T}/ds##. ##d\vec{T}/ds=d\vec{T}/dt/(ds/dt)## ##d\vec{T}/dt=2j## and ##ds/dt=√(1+(2t/1)^2)## so ##d\vec{T}/ds=2j/√(1+(4t^2)## and the magnitude is ##2/√(1+(4t^2)## but the answer is 2/(1+(4t^2)3/2
What I am missing ?
Last edited:
