MHB Find nth Derivative - Quick Tutorial

anil86
Messages
10
Reaction score
0
Find nth derivative:

Please view attachment!View attachment 1701
 

Attachments

  • Image0354.jpg
    Image0354.jpg
    82.8 KB · Views: 110
Physics news on Phys.org
Could you please re-scan your attachment? The current one is so out-of-focus as to be nearly useless.
 
Ackbach said:
Could you please re-scan your attachment? The current one is so out-of-focus as to be nearly useless.

I regret for the inconvenience. View attachment 1716
 

Attachments

  • Image0356.jpg
    Image0356.jpg
    109.1 KB · Views: 93
The assignment does not ask you to find the $n$th derivative, but to prove that $$(1-x^2)y_{n+1} - 2(\gamma + nx) y_n -n(n-1)y_{n-1} = 0.$$

You have shown that $$y_1 = \frac{\gamma y}{1+x} + \frac{\gamma y}{1-x} = \frac{2\gamma y}{1-x^2}.$$ Write that as $$(1-x^2)y_1 - 2\gamma y = 0.$$ Differentiate, to get $$(1-x^2)y_2 - 2xy_1 - 2\gamma y_1 = 0.$$ Now use that as the base case for a proof by induction.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top